Respuesta :
By DeMoivre's theorem, you have
[tex]\left(\cos\dfrac{2\pi}7+i\sin\dfrac{2\pi}7\right)^5=\cos\dfrac{10\pi}7+i\sin\dfrac{10\pi}7[/tex]
[tex]\left(\cos\dfrac{2\pi}7+i\sin\dfrac{2\pi}7\right)^5=\cos\dfrac{10\pi}7+i\sin\dfrac{10\pi}7[/tex]
Answer:
[tex](\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}})^5 =\cos{(\frac{10\pi}{7})}+i\sin{(\frac{10\pi}{7})}[/tex]
Step-by-step explanation:
Given the complex number
[tex](\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}})^5[/tex]
we have to write the complex number in trigonometric form using de moivre's theorem.
By de Moivre's formula,
[tex](\cos x+i \sin x)^ n=\cos{nx}+i\sin{nx}[/tex]
∴ [tex](\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}})^5=\cos{5(\frac{2\pi}{7})}+i\sin{5(\frac{2\pi}{7})}[/tex]
[tex]=\cos{(\frac{10\pi}{7})}+i\sin{(\frac{10\pi}{7})}[/tex]
which is required form
Otras preguntas
