Respuesta :

By DeMoivre's theorem, you have

[tex]\left(\cos\dfrac{2\pi}7+i\sin\dfrac{2\pi}7\right)^5=\cos\dfrac{10\pi}7+i\sin\dfrac{10\pi}7[/tex]

Answer:

[tex](\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}})^5 =\cos{(\frac{10\pi}{7})}+i\sin{(\frac{10\pi}{7})}[/tex]

Step-by-step explanation:

Given the complex number

[tex](\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}})^5[/tex]

we have to write the complex number in trigonometric form using de moivre's theorem.

By de Moivre's formula,

[tex](\cos x+i \sin x)^ n=\cos{nx}+i\sin{nx}[/tex]

∴ [tex](\cos{\frac{2\pi}{7}}+i\sin{\frac{2\pi}{7}})^5=\cos{5(\frac{2\pi}{7})}+i\sin{5(\frac{2\pi}{7})}[/tex]

[tex]=\cos{(\frac{10\pi}{7})}+i\sin{(\frac{10\pi}{7})}[/tex]

which is required form

       

RELAXING NOICE
Relax