Respuesta :
so hmm, using those on the a+bi values on the x-axis and imaginary axis
[tex]\bf \begin{cases} -2+1i\\ -6-11i \end{cases}\implies \begin{cases} -2,1\\ -6,-11 \end{cases}\\\\ -----------------------------\\\\ \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -2}}\quad ,&{{ 1}})\quad % (c,d) &({{ -6}}\quad ,&{{ -11}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right) \\\\\\ \left(\cfrac{-2+(-2)}{2}\quad ,\quad \cfrac{-11+1}{2} \right)[/tex]
the middle point of the diameter chord, is of course, the center of the circle
[tex]\bf \begin{cases} -2+1i\\ -6-11i \end{cases}\implies \begin{cases} -2,1\\ -6,-11 \end{cases}\\\\ -----------------------------\\\\ \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -2}}\quad ,&{{ 1}})\quad % (c,d) &({{ -6}}\quad ,&{{ -11}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right) \\\\\\ \left(\cfrac{-2+(-2)}{2}\quad ,\quad \cfrac{-11+1}{2} \right)[/tex]
the middle point of the diameter chord, is of course, the center of the circle
Answer:
B.) -4 - 5i
________________
Here is how I found my answer !
-To find a midpoint between 2 complex numbers is to determine the average
1.) Add the two end points
(-2 + i) + (-6 - 11i)
2.) Divide it all by 2
(-2 + i) + (-6 - 11i) / 2
3.) Numerator should end up with -8 - 10i
-8 - 10i / 2
4.) Finish dividing
Answer is : -4 - 5i
_________________________
Hope this gives a better understanding of how to solve it !! :D