Respuesta :

B.4 because i used the formula to compute it

Answer:

B


Step-by-step explanation:

The formula for standard deviation is:

St. Dev = [tex]\sqrt{\frac{SUM(x-\mu)^{2}}{n}}[/tex]

This means "we subtract the mean, [tex]\mu[/tex], from each value given in the data set and square the result. Then SUM each of them. Then divide by total number of numbers, [tex]n[/tex]. Then take the square root of the total."

Finding mean, [tex]\mu[/tex], first:

[tex]\mu=\frac{2+5+6+8+14}{5}=7[/tex]

Now calculating St. Dev.:

[tex]\sqrt{\frac{(2-7)^{2}+(5-7)^{2}+(6-7)^{2}+(8-7)^{2+(14-7)^{2}}}{5}} \\=\sqrt{\frac{25+4+1+1+49}{5}} \\=\sqrt{\frac{80}{5}} \\=\sqrt{16} \\=4[/tex]


Answer choice B is right.