Respuesta :
Answer:
B
Step-by-step explanation:
The formula for standard deviation is:
St. Dev = [tex]\sqrt{\frac{SUM(x-\mu)^{2}}{n}}[/tex]
This means "we subtract the mean, [tex]\mu[/tex], from each value given in the data set and square the result. Then SUM each of them. Then divide by total number of numbers, [tex]n[/tex]. Then take the square root of the total."
Finding mean, [tex]\mu[/tex], first:
[tex]\mu=\frac{2+5+6+8+14}{5}=7[/tex]
Now calculating St. Dev.:
[tex]\sqrt{\frac{(2-7)^{2}+(5-7)^{2}+(6-7)^{2}+(8-7)^{2+(14-7)^{2}}}{5}} \\=\sqrt{\frac{25+4+1+1+49}{5}} \\=\sqrt{\frac{80}{5}} \\=\sqrt{16} \\=4[/tex]
Answer choice B is right.