Respuesta :

Answer:

Step-by-step explanation:

Alright, lets get started.

using Sine Law,

[tex]\frac{sinA}{a}=\frac{sinB}{b}[/tex]

[tex]\frac{sin30}{4}=\frac{sinB}{6}[/tex]

[tex]sinB=0.75[/tex]

[tex]angle B = 48.6[/tex]

Another angle will be

[tex]angle B' = 180-48.6 = 131.4[/tex]

considering angle B, angle C = [tex]180 - (48.6+30)=101.4[/tex]

considering angle B', angle C' = [tex]180-(131.4+30)=18.6[/tex]

[tex]\frac{sinA}{a}=\frac{sinC}{c}[/tex]

[tex]\frac{sin30}{4}=\frac{sin101.4}{c}[/tex]

[tex]c = 7.84[/tex]

Similarly, finding c'

[tex]\frac{sinA}{a}=\frac{sinC'}{c'}[/tex]

[tex]\frac{sin30}{4}=\frac{sin18.6}{c'}[/tex]

[tex]c'=2.55[/tex]

Hence two triangles are possible with below details:  :   Answer

A = 30, B = 48.6, C = 101.4, c = 7.84

A = 30, B' = 131.4, C' = 18.6, c' = 2.55

Hope it will help :)

Answer:

2

Step-by-step explanation: