Respuesta :
Answer:
Step-by-step explanation:
Alright, lets get started.
using Sine Law,
[tex]\frac{sinA}{a}=\frac{sinB}{b}[/tex]
[tex]\frac{sin30}{4}=\frac{sinB}{6}[/tex]
[tex]sinB=0.75[/tex]
[tex]angle B = 48.6[/tex]
Another angle will be
[tex]angle B' = 180-48.6 = 131.4[/tex]
considering angle B, angle C = [tex]180 - (48.6+30)=101.4[/tex]
considering angle B', angle C' = [tex]180-(131.4+30)=18.6[/tex]
[tex]\frac{sinA}{a}=\frac{sinC}{c}[/tex]
[tex]\frac{sin30}{4}=\frac{sin101.4}{c}[/tex]
[tex]c = 7.84[/tex]
Similarly, finding c'
[tex]\frac{sinA}{a}=\frac{sinC'}{c'}[/tex]
[tex]\frac{sin30}{4}=\frac{sin18.6}{c'}[/tex]
[tex]c'=2.55[/tex]
Hence two triangles are possible with below details: : Answer
A = 30, B = 48.6, C = 101.4, c = 7.84
A = 30, B' = 131.4, C' = 18.6, c' = 2.55
Hope it will help :)