Respuesta :
OverviewFrom the equation of Kinetic Energy from Kinetic Molecular Theory, We know that:
K.E=(3/2)kT
(1/2)mvrms2=(3/2)kT
mvrms2=3kT
vrms2=(3kT)/mWhere k is constant has the value of 1.38x10-23Jmol-1K-1
Step: 2 CalculationGiven:
T=800K
k=1.38x10-23Jmol-1K-1
molecular mass of hydrogen molecule = 2 a.m.u = 2x1.67x10-27Kg = 3.34x10-27KgSolution:
According to above equation:
vrms2=(3kT)/m
vrms2=(3x1.38x10-23x800)/(3.34x10-27)
vrms2=(3.312x10-20)/(3.34x10-27)
vrms2=9.916x106
Taking square root both sides:
vrms=3148.96m/s2 (Ans)Share this post :
K.E=(3/2)kT
(1/2)mvrms2=(3/2)kT
mvrms2=3kT
vrms2=(3kT)/mWhere k is constant has the value of 1.38x10-23Jmol-1K-1
Step: 2 CalculationGiven:
T=800K
k=1.38x10-23Jmol-1K-1
molecular mass of hydrogen molecule = 2 a.m.u = 2x1.67x10-27Kg = 3.34x10-27KgSolution:
According to above equation:
vrms2=(3kT)/m
vrms2=(3x1.38x10-23x800)/(3.34x10-27)
vrms2=(3.312x10-20)/(3.34x10-27)
vrms2=9.916x106
Taking square root both sides:
vrms=3148.96m/s2 (Ans)Share this post :
Answer:
[tex]v = 3.16 \times 10^3 m/s[/tex]
Explanation:
RMS speed of the hydrogen is given as
[tex]v = \sqrt{\frac{3RT}{M}}[/tex]
now we will have
T = 800 k
M = molar mass of hydrogen gas
so here
M = 2 gm/mol = 0.002 kg/mol
so here we will have
[tex]v = \sqrt{\frac{3(8.31)(800)}{0.002}}[/tex]
[tex]v = 3.16 \times 10^3 m/s[/tex]