Respuesta :
we know that
A polynomial in the form [tex]a^{3} +b^{3}[/tex] is called a sum of cubes
so
Let's verify each case to determine the solution
case A) [tex]-64x^{6} y^{12} +125x^{16} y^{3}[/tex]
we know that
[tex]-64=-4^{3}[/tex]
[tex]x^{6}= (x^{2})^{3}[/tex]
[tex]y^{12}= (y^{4})^{3}[/tex]
[tex]125=5^{3}[/tex]
[tex]x^{16}=x^{15} *x=x*(x^{5})^{3}[/tex] -------> is not a perfect cube
[tex]y^{3}= (y)^{3}[/tex]
therefore
the case A) is not a sum of cubes
case B) [tex]-32x^{6} y^{12} +125x^{16} y^{3}[/tex]
we know that
[tex]-32=-2^{5}[/tex] -------> is not a perfect cube
[tex]x^{6}= (x^{2})^{3}[/tex]
[tex]y^{12}= (y^{4})^{3}[/tex]
[tex]125=5^{3}[/tex]
[tex]x^{16}=x^{15} *x=x*(x^{5})^{3}[/tex] -------> is not a perfect cube
[tex]y^{3}= (y)^{3}[/tex]
therefore
the case B) is not a sum of cubes
case C) [tex]32x^{6} y^{12} +125x^{9} y^{3}[/tex]
we know that
[tex]32=2^{5}[/tex] -------> is not a perfect cube
[tex]x^{6}= (x^{2})^{3}[/tex]
[tex]y^{12}= (y^{4})^{3}[/tex]
[tex]125=5^{3}[/tex]
[tex]x^{9}=(x^{3})^{3}[/tex]
[tex]y^{3}= (y)^{3}[/tex]
therefore
the case C) is not a sum of cubes
case A) [tex]64x^{6} y^{12} +125x^{9} y^{3}[/tex]
we know that
[tex]64=4^{3}[/tex]
[tex]x^{6}= (x^{2})^{3}[/tex]
[tex]y^{12}= (y^{4})^{3}[/tex]
[tex]125=5^{3}[/tex]
[tex]x^{9}=(x^{3})^{3}[/tex]
[tex]y^{3}= (y)^{3}[/tex]
Substitute
[tex]4^{3}(x^{2})^{3}(y^{4})^{3} +5^{3}(x^{3})^{3}(y)^{3}[/tex]
[tex](4x^{2}y^{4})^{3} +(5x^{3}y)^{3}[/tex]
therefore
the answer is
[tex]64x^{6} y^{12} +125x^{9} y^{3}[/tex] is a sum of cubes
Sum of cubes is [tex]64x^6y^{12}+125x^{9}y^3[/tex], therefore the correct option is [tex]d[/tex].
Step-by-step explanation:
Given: Expressions of sum of cubes
As we know that ,
A polynomial in the form [tex]a^3+b^3[/tex] is called a sum of cubes.
Now solving each option one by one:
(a) [tex]-64x^6y^{12}+125x^{16}y^3[/tex]
[tex](-4x^2y^4)^3+(5yx^5)^3x[/tex]
[tex]-64x^6y^{12}[/tex] is a perfect cube but [tex](5yx^5)^3x[/tex] is not a perfect cube.
(b) [tex]-32x^6y^{12}+125x^{16}y^3[/tex]
Here, [tex]-32x^6y^{12}[/tex] and [tex](5yx^5)^3x[/tex] are not a perfect cubes.
(c) [tex]32x^6y^{12}+125x^{9}y^3[/tex]
Here, [tex]32x^6y^{12}[/tex] and [tex](5yx^5)^3x[/tex] are not a perfect cubes.
(d) [tex]64x^6y^{12}+125x^{9}y^3[/tex]
Here, [tex]64x^6y^{12}[/tex] are [tex](5yx^5)^3x[/tex] perfect cube as [tex](4x^2y^4)^3+(5x^3y)^3[/tex].
Hence, the correct option is [tex]d[/tex].
Learn more about Cubic polynomial here:
https://brainly.com/question/5062640?referrer=searchResults