Respuesta :
[tex]\bf \left( 3i-\cfrac{2}{3} \right)-(6i-5)\implies 3i-\cfrac{2}{3}-6i+5
\\\\\\
-6i+5-\cfrac{2}{3}\implies
\begin{array}{llll}
\cfrac{13}{3}&-&6i\\
\uparrow &&\uparrow \\
a&-&bi
\end{array}[/tex]
standard form for a complex expression, I assume it means the a + bi form, nothing else
standard form for a complex expression, I assume it means the a + bi form, nothing else
Answer:
so, the standard form is: [tex](\dfrac{13}{3})+i(-3)[/tex]
Step-by-step explanation
The standard form of a complex number is given in the form of:
[tex]a+i b[/tex] where a,b belongs to real numbers.
we are given the expression in complex number as:
[tex]=(3i-\dfrac{2}{3})-(6i-5)[/tex]
on combining the like terms i.e. on combining the real and imaginary part of the complex number we get,
[tex]=(-\dfrac{2}{3}+5)+i(3-6)\\\\=(\dfrac{13}{3})+i(-3)[/tex]
Hence, on comparing our number with the standard form of the complex number we get
[tex]a=\dfrac{13}{3},b=-3[/tex]