Respuesta :

The answer would be x-4+ 3/x-3

Answer:

The result becomes:

[tex]x-4+\frac{3}{x-3}[/tex]

Step-by-step explanation:

The given expression in correct order is :

[tex]\frac{x^{2}-7x+15 }{x-3}[/tex]

Now, dividing the leading coefficients of the numerator and divisor we get

[tex]\frac{x^{2} }{x}=x[/tex]

So, quotient is x

Multiplying [tex]x-3[/tex] by x

=>[tex]x^{2} -3x[/tex]

Subtracting [tex]x^{2} -3x[/tex] from [tex]x^{2} -7x+15[/tex] we get [tex]-4x+15[/tex]

This is the new remainder.

Now, the given equation becomes: [tex]x+\frac{-4x+15}{x-3}[/tex]

Dividing the leading coefficients we get [tex]\frac{-4x}{x}=-4[/tex]

Multiplying [tex]x-3[/tex] bu -4 to get [tex]-4x+12[/tex]

Subtracting [tex]-4x+12[/tex] from [tex]-4x+15[/tex] = 3

This 3 is the new remainder.

Now, the equation becomes: [tex]-4+\frac{3}{x-3}[/tex]

Therefore, the result becomes:

[tex]x-4+\frac{3}{x-3}[/tex]