Respuesta :

Parameterize the region by

[tex]\mathbf r(u,v)=(x(u,v),y(u,v),z(u,v))=(u\cos v,u\sin v,u^2)[/tex]

where [tex]0\le u\le1[/tex] and [tex]0\le v\le2\pi[/tex]. The area of the surface is then given by the surface integral

[tex]\displaystyle\iint_S\mathrm dS=\int_{u=0}^{u=1}\int_{v=0}^{v=2\pi}\left\|\mathbf r_u\times\mathbf r_v\right\|\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle\int_{u=0}^{u=1}\int_{v=0}^{v=2\pi}u\sqrt{1+4u^2}\,\mathrm dv\,\mathrm du[/tex]
[tex]=\displaystyle2\pi\int_{u=0}^{u=1}u\sqrt{1+4u^2}\,\mathrm du[/tex]
[tex]=\dfrac{(5\sqrt5-1)\pi}6[/tex]