Respuesta :
[tex]\mathbf y'=\mathbf A\mathbf y\iff\begin{bmatrix}{y_1}'\\{y_2}'\end{bmatrix}=\begin{bmatrix}\frac52&-\frac32\\-\frac32&\frac52\end{bmatrix}\begin{bmatrix}y_1\\y_2\end{bmatrix}[/tex]
Find the eigensystem corresponding to the coefficient matrix.
[tex]\det(\mathbf A-\lambda\mathbf I)=\begin{vmatrix}\frac52-\lambda&-\frac32\\-\frac32&\frac52-\lambda\end{vmatrix}=0[/tex]
[tex]\left(\dfrac52-\lambda\right)^2-\left(-\dfrac32\right)^2=0[/tex]
[tex]\lambda^2-5\lambda+4=0[/tex]
[tex](\lambda-1)(\lambda-4)=0[/tex]
[tex]\implies \lambda_1=1,\lambda_2=4[/tex]
For [tex]\lambda_1=1[/tex], the associated eigenvector satisfies
[tex](\mathbf A-\mathbf I)\mathbf v_1=\mathbf 0\iff\begin{bmatrix}\frac32&-\frac32\\-\frac32&\frac32\end{bmatrix}\begin{bmatrix}v_{11}\\v_{12}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]
[tex]\implies v_{11}-v_{12}=0\implies\mathbf v_1=\begin{bmatrix}1\\1\end{bmatrix}[/tex]
For [tex]\lambda_2=4[/tex], we have
[tex](\mathbf A-4\mathbf I)\mathbf v_2=\mathbf 0\iff\begin{bmatrix}-\frac32&-\frac32\\-\frac32&-\frac32\end{bmatrix}\begin{bmatrix}v_{21}\\v_{22}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]
[tex]\implies v_{21}+v_{22}=0\implies\mathbf v_2=\begin{bmatrix}1\\-1\end{bmatrix}[/tex]
The general solution for the ODE system is then
[tex]\mathbf y=C_1e^{\lambda_1t}\mathbf v_1+C_2e^{\lambda_2t}\mathbf v_2[/tex]
[tex]\iff\begin{bmatrix}y_1\\y_2\end{bmatrix}=C_1e^t\begin{bmatrix}1\\1\end{bmatrix}+C_2e^{4t}\begin{bmatrix}1\\-1\end{bmatrix}[/tex]
[tex]\implies\begin{bmatrix}y_1\\y_2\end{bmatrix}=\begin{bmatrix}C_1e^t+C_2e^{4t}\\C_1e^t-C_2e^{4t}\end{bmatrix}[/tex]
Find the eigensystem corresponding to the coefficient matrix.
[tex]\det(\mathbf A-\lambda\mathbf I)=\begin{vmatrix}\frac52-\lambda&-\frac32\\-\frac32&\frac52-\lambda\end{vmatrix}=0[/tex]
[tex]\left(\dfrac52-\lambda\right)^2-\left(-\dfrac32\right)^2=0[/tex]
[tex]\lambda^2-5\lambda+4=0[/tex]
[tex](\lambda-1)(\lambda-4)=0[/tex]
[tex]\implies \lambda_1=1,\lambda_2=4[/tex]
For [tex]\lambda_1=1[/tex], the associated eigenvector satisfies
[tex](\mathbf A-\mathbf I)\mathbf v_1=\mathbf 0\iff\begin{bmatrix}\frac32&-\frac32\\-\frac32&\frac32\end{bmatrix}\begin{bmatrix}v_{11}\\v_{12}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]
[tex]\implies v_{11}-v_{12}=0\implies\mathbf v_1=\begin{bmatrix}1\\1\end{bmatrix}[/tex]
For [tex]\lambda_2=4[/tex], we have
[tex](\mathbf A-4\mathbf I)\mathbf v_2=\mathbf 0\iff\begin{bmatrix}-\frac32&-\frac32\\-\frac32&-\frac32\end{bmatrix}\begin{bmatrix}v_{21}\\v_{22}\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}[/tex]
[tex]\implies v_{21}+v_{22}=0\implies\mathbf v_2=\begin{bmatrix}1\\-1\end{bmatrix}[/tex]
The general solution for the ODE system is then
[tex]\mathbf y=C_1e^{\lambda_1t}\mathbf v_1+C_2e^{\lambda_2t}\mathbf v_2[/tex]
[tex]\iff\begin{bmatrix}y_1\\y_2\end{bmatrix}=C_1e^t\begin{bmatrix}1\\1\end{bmatrix}+C_2e^{4t}\begin{bmatrix}1\\-1\end{bmatrix}[/tex]
[tex]\implies\begin{bmatrix}y_1\\y_2\end{bmatrix}=\begin{bmatrix}C_1e^t+C_2e^{4t}\\C_1e^t-C_2e^{4t}\end{bmatrix}[/tex]