Respuesta :
[tex]\bf cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)}
\qquad
% cosecant
csc(\theta)=\cfrac{1}{sin(\theta)}
\qquad
% secant
sec(\theta)=\cfrac{1}{cos(\theta)}\\\\
-----------------------------\\\\
cot(x)[sin(x)-sec(x)]\implies \cfrac{cos(x)}{sin(x)}\cdot sin(x)-\cfrac{cos(x)}{sin(x)}\cdot \cfrac{1}{cos(x)}
\\\\\\
cos(x)-\cfrac{1}{sin(x)}\implies cos(x)-csc(x)[/tex]
cot is just cos/sin. And sec is just 1/sin. So if you distribute the cot function you get cot(x)sin(x)-cot(x)sec(x) which turns out to be cos(x)-cos/sin^2(x). You could also note that sin^2(x) is 1-cos^2(x) to get
[tex]cos(x)[1- \frac{1}{1-( cos(x))^{2} } ][/tex]
[tex]cos(x)[1- \frac{1}{1-( cos(x))^{2} } ][/tex]