Answer:
[tex]\text{The surface area is }351 m^2[/tex]
Step-by-step explanation:
Given a regular pyramid we have to find the surface area of regular pyramid.
Side of base(regular hexagon)=13 m
Slant height=l=9 m
[tex]\text{Perimeter of regular hexagon=}13\times 6=78m[/tex]
[tex]\text{Surface area=}\frac{1}{2}\times \text{perimeter of base}\times \text{slant height}[/tex]
[tex]=\frac{1}{2}\times 78\times 9=351 m^2[/tex]
Option A is correct.
Answer:
Option D. 790 m²
Step-by-step explanation:
Surface area of the regular pyramid = surface area of hexagonal base + 6×Surface area of slant triangular side
Surface area of the hexagonal base = [tex]\frac{3\sqrt{3} }{2}(side)^{2}[/tex]
= [tex]\frac{3\sqrt{3} }{2}(13)^{2}=\frac{(3)(169)\sqrt{3}}{2}[/tex]
= 439 m²
Surface area of slant side = [tex]\frac{1}{2}(Base)(Height)=\frac{1}{2}(13)(9)[/tex]
= 58.5 m²
Surface area of the pyramid = 439 + 6×58.5 = 439 + 351 = 790 m²
Option D. 790 m² is the answer.