Find the surface area of the regular pyramid shown to the nearest whole number. The figure is not drawn to scale.

A. 351 m^2
B. 415 m^2
C. 542 m^2
D. 790 m^2

Find the surface area of the regular pyramid shown to the nearest whole number The figure is not drawn to scale A 351 m2 B 415 m2 C 542 m2 D 790 m2 class=

Respuesta :

Answer:

[tex]\text{The surface area is }351 m^2[/tex]

Step-by-step explanation:

Given a regular pyramid we have to find the surface area of regular pyramid.

Side of base(regular hexagon)=13 m

Slant height=l=9 m

[tex]\text{Perimeter of regular hexagon=}13\times 6=78m[/tex]

[tex]\text{Surface area=}\frac{1}{2}\times \text{perimeter of base}\times \text{slant height}[/tex]

[tex]=\frac{1}{2}\times 78\times 9=351 m^2[/tex]

Option A is correct.

Answer:

Option D. 790 m²

Step-by-step explanation:

Surface area of the regular pyramid = surface area of hexagonal base + 6×Surface area of slant triangular side

Surface area of the hexagonal base = [tex]\frac{3\sqrt{3} }{2}(side)^{2}[/tex]

= [tex]\frac{3\sqrt{3} }{2}(13)^{2}=\frac{(3)(169)\sqrt{3}}{2}[/tex]

= 439 m²

Surface area of slant side = [tex]\frac{1}{2}(Base)(Height)=\frac{1}{2}(13)(9)[/tex]

= 58.5 m²

Surface area of the pyramid = 439 + 6×58.5 = 439 + 351 = 790 m²

Option D. 790 m² is the answer.