Respuesta :
Parameterize the lateral face [tex]T_1[/tex] of the cylinder by
[tex]\mathbf r_1(u,v)=(x(u,v),y(u,v),z(u,v))=(2\cos u,2\sin u,v[/tex]
where [tex]0\le u\le2\pi[/tex] and [tex]0\le v\le3[/tex], and parameterize the disks [tex]T_2,T_3[/tex] as
[tex]\mathbf r_2(r,\theta)=(x(r,\theta),y(r,\theta),z(r,\theta))=(r\cos\theta,r\sin\theta,0)[/tex]
[tex]\mathbf r_3(r,\theta)=(r\cos\theta,r\sin\theta,3)[/tex]
where [tex]0\le r\le2[/tex] and [tex]0\le\theta\le2\pi[/tex].
The integral along the surface of the cylinder (with outward/positive orientation) is then
[tex]\displaystyle\iint_S(x^2+y^2+z^2)\,\mathrm dS=\left\{\iint_{T_1}+\iint_{T_2}+\iint_{T_3}\right\}(x^2+y^2+z^2)\,\mathrm dS[/tex]
[tex]=\displaystyle\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}((2\cos u)^2+(2\sin u)^2+v^2)\left\|{{\mathbf r}_1}_u\times{{\mathbf r}_2}_v\right\|\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+0^2)\left\|{{\mathbf r}_2}_r\times{{\mathbf r}_2}_\theta\right\|\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+3^2)\left\|{{\mathbf r}_3}_r\times{{\mathbf r}_3}_\theta\right\|\,\mathrm d\theta\,\mathrm dr[/tex]
[tex]=\displaystyle2\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r^3\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r(r^2+9)\,\mathrm d\theta\,\mathrm dr[/tex]
[tex]=\displaystyle4\pi\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv+2\pi\int_{r=0}^{r=2}r^3\,\mathrm dr+2\pi\int_{r=0}^{r=2}r(r^2+9)\,\mathrm dr[/tex]
[tex]=136\pi[/tex]
[tex]\mathbf r_1(u,v)=(x(u,v),y(u,v),z(u,v))=(2\cos u,2\sin u,v[/tex]
where [tex]0\le u\le2\pi[/tex] and [tex]0\le v\le3[/tex], and parameterize the disks [tex]T_2,T_3[/tex] as
[tex]\mathbf r_2(r,\theta)=(x(r,\theta),y(r,\theta),z(r,\theta))=(r\cos\theta,r\sin\theta,0)[/tex]
[tex]\mathbf r_3(r,\theta)=(r\cos\theta,r\sin\theta,3)[/tex]
where [tex]0\le r\le2[/tex] and [tex]0\le\theta\le2\pi[/tex].
The integral along the surface of the cylinder (with outward/positive orientation) is then
[tex]\displaystyle\iint_S(x^2+y^2+z^2)\,\mathrm dS=\left\{\iint_{T_1}+\iint_{T_2}+\iint_{T_3}\right\}(x^2+y^2+z^2)\,\mathrm dS[/tex]
[tex]=\displaystyle\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}((2\cos u)^2+(2\sin u)^2+v^2)\left\|{{\mathbf r}_1}_u\times{{\mathbf r}_2}_v\right\|\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+0^2)\left\|{{\mathbf r}_2}_r\times{{\mathbf r}_2}_\theta\right\|\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+3^2)\left\|{{\mathbf r}_3}_r\times{{\mathbf r}_3}_\theta\right\|\,\mathrm d\theta\,\mathrm dr[/tex]
[tex]=\displaystyle2\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r^3\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r(r^2+9)\,\mathrm d\theta\,\mathrm dr[/tex]
[tex]=\displaystyle4\pi\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv+2\pi\int_{r=0}^{r=2}r^3\,\mathrm dr+2\pi\int_{r=0}^{r=2}r(r^2+9)\,\mathrm dr[/tex]
[tex]=136\pi[/tex]