Which polynomial is equivalent to (2h − 3k)(h + 5k)?

A) 2h2 + 7hk − 15k2

B) 2h2 − 7hk − 15k2

C) 2h2 + 7hk + 15k2

D) 2h2 − 7hk + 15k2

Respuesta :

2h^2 + 7hk  -15k^2
you can use factoring
Ver imagen daylucky124

Answer:

Option (a) is correct.

An equivalent polynomial to the given polynomial [tex]\left(2h\:−\:3k\right)\left(h\:+\:5k\right)[/tex] is [tex]2h^2+7hk-15k^2[/tex]

Step-by-step explanation:

Given : Polynomial [tex]\left(2h\:−\:3k\right)\left(h\:+\:5k\right)[/tex]

We have to find an equivalent polynomial to the given polynomial [tex]\left(2h\:−\:3k\right)\left(h\:+\:5k\right)[/tex]

Consider the given polynomial [tex]\left(2h\:−\:3k\right)\left(h\:+\:5k\right)[/tex]

Apply FOIL method, [tex]\left(a+b\right)\left(c+d\right)=ac+ad+bc+bd[/tex]

[tex]a=2h,\:b=-3k,\:c=h,\:d=5k[/tex]

[tex]=2hh+2h\cdot \:5k+\left(-3k\right)h+\left(-3k\right)\cdot \:5k[/tex]

Apply plus minus rule, [tex]+(-a)=-a[/tex]

[tex]=2hh+2\cdot \:5hk-3hk-3\cdot \:5kk[/tex]

Add similar terms, we have,

[tex]\:10hk-3hk=7hk[/tex]

We have,

[tex]=2h^2+7hk-15k^2[/tex]

Thus, An equivalent polynomial to the given polynomial [tex]\left(2h\:−\:3k\right)\left(h\:+\:5k\right)[/tex] is [tex]2h^2+7hk-15k^2[/tex]