Respuesta :

The required complex root of 5-5sqrt3i are:

[tex]10, 10(cos\frac{\pi }{6} )+isin (\frac{\pi }{6}), 10(cos\frac{\pi }{6} )+isin (\frac{\pi }{6}) ] \ and \ z_3=[10(cos\frac{\pi }{2} )+isin (\frac{\pi }{2}) ][/tex]

Complex numbers are square roots of a negative number. In rectangular coordinates, they are expressed as:

z = x + iy

Given the complex number

[tex]z=5-5\sqrt{3} i[/tex]

Express in polar form [tex]z=r(cos \theta +isin \theta)[/tex]

Get the modulus

[tex]r=|z|=\sqrt{5^2+(-5\sqrt{3})^2)} \\r=|z|=\sqrt{25+(75)} \\r=|z| = \sqrt{100}\\r=10[/tex]

Get the argument

[tex]\theta = tan^{-1}\frac{y}{x}\\ \theta = tan^{-1}\frac{-5\sqrt{3}}{5}\\\theta = tan^{-1} - \sqrt{3}\\\theta = -60^0[/tex]

Since tan is negative in the second and fourth quadrant, then:

[tex]\theta= 180 - 60\\\theta = 120^0[/tex]

The complex number in the polar form will be:

[tex]z=10cos(cos \frac{2 \pi}{3}+isin\frac{2\pi}{3} )[/tex]

Get the fourth root of the result

[tex]z^{\frac{1}{4} }=[10(cos(\frac{2\pi}{3} )+isin\frac{2\pi}{3} ]^{\frac{1}{4} }\\[/tex]

According to De Moivre's theorem:

[tex]z^{\frac{1}{4} }=[10(cos\frac{1}{4} (\frac{2\pi}{3} )+isin\frac{1}{4} (\frac{2\pi}{3}) ]\\z^{\frac{1}{4} }=[10(cos\frac{2\pi}{12} )+isin (\frac{2\pi}{12}) ]\\z^{\frac{1}{4} }=[10(cos\frac{\pi}{6} )+isin (\frac{ \pi}{6}) ][/tex]

Get the four roots of the complex number

[tex]z^{\frac{1}{4} }_k=[10(cos\frac{\pi k}{6} )+isin (\frac{\pi k}{6}) ][/tex]

If k = 0

[tex]z_0=[10(cos0+isin 0 ]\\z_0=10\\[/tex]

If k = 1

[tex]z_1=[10(cos\frac{\pi }{6} )+isin (\frac{\pi }{6}) ][/tex]

If k = 2

[tex]z_2=[10(cos\frac{2\pi }{6} )+isin (\frac{2\pi }{6}) ]\\z_2=[10(cos\frac{\pi }{3} )+isin (\frac{\pi }{3}) ][/tex]

If k = 3

[tex]z_3=[10(cos\frac{3\pi }{6} )+isin (\frac{3\pi }{6}) ]\\z_3=[10(cos\frac{\pi }{2} )+isin (\frac{\pi }{2}) ][/tex]

From the solution above, the four roots of the complex numbers are:

[tex]10, 10(cos\frac{\pi }{6} )+isin (\frac{\pi }{6}), 10(cos\frac{\pi }{6} )+isin (\frac{\pi }{6}) ] \ and \ z_3=[10(cos\frac{\pi }{2} )+isin (\frac{\pi }{2}) ][/tex]

Learn more here: https://brainly.com/question/13663525

RELAXING NOICE
Relax