[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity}
\\\\
A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right]
\\\\[/tex]
[tex]\bf \begin{cases}
A=
\begin{array}{llll}
\textit{original amount}\\
\textit{already compounded}
\end{array}\begin{array}{llll}\end{array}\\
pymnt=\textit{periodic payments}\to &1200\\
r=rate\to 4\%\to \frac{4}{100}\to &0.04\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, meaning }
\end{array}\to &4\\
t=years\to &8
\end{cases}
\\\\\\
A=1200\left[ \cfrac{\left( 1+\frac{0.04}{4} \right)^{4\cdot 8}-1}{\frac{0.04}{4}} \right][/tex]