Respuesta :
[tex]\bf \textit{arc's length}\\\\
s=\cfrac{\theta r\pi }{180}\qquad
\begin{cases}
r=radius\\
\theta=\textit{central angle in degrees}\\
s=\textit{arc's length}
\end{cases}[/tex]
Answer:
6.28 units
Step-by-step explanation:
Since, the length of an arc on a circle is,
[tex]l=r\times \theta[/tex]
Where, r is the radius of the circle and [tex]\theta[/tex] is the central angle ( in radian ) made by the arc,
Here,
r = 3 unit,
[tex]\theta=120^{\circ}=120\times \frac{\pi}{180}=\frac{2\pi}{3}\text{ radian}[/tex]
( [tex]\pi \text{ radian}= 180^{\circ}[/tex] )
Hence, the length of the given arc is,
[tex]l=3\times \frac{2\pi}{3}=2\pi =6.28318530718\approx 6.28\text{ units}[/tex]
First option is correct.