Respuesta :
For this case we have the following equation:
[tex] a ^ 2 + b ^ 2-2abcosC = c ^ 2
[/tex]
To find the value of 2abcosC we must follow the following steps:
Subtract a ^ 2 on both sides of the equation:
[tex] -a ^ 2 + a ^ 2 + b ^ 2-2abcosC = c ^ 2-a ^ 2
b ^ 2-2abcosC = c ^ 2-a ^ 2
[/tex]
Subtract b ^ 2 on both sides of the equation:
[tex] -b ^ 2 + b ^ 2-2abcosC = c ^ 2-a ^ 2-b ^ 2
-2abcosC = c ^ 2-a ^ 2-b ^ 2
[/tex]
Multiply both sides of the equation by -1:
[tex] (-2abcosC) (- 1) = (c ^ 2-a ^ 2-b ^ 2) (- 1)
2abcosC = -c ^ 2 + a ^ 2 + b ^ 2
[/tex]
Answer:
the value of 2abcosC is:
[tex] 2abcosC = -c ^ 2 + a ^ 2 + b ^ 2 [/tex]
Answer:
The value of [tex]2ab\cos C[/tex] is [tex]a^2+b^2-c^2[/tex]
Step-by-step explanation:
Given : The laws of cosine is [tex]a^2+b^2-2ab\cos C=c^2[/tex]
We have to find the value of [tex]2ab\cos C[/tex]
Consider the given formula for laws of cosine,
[tex]a^2+b^2-2ab\cos C=c^2[/tex]
Subtract both side [tex]c^2[/tex], we have,
[tex]a^2+b^2-2ab\cos C-c^2=0[/tex]
Add [tex]2ab\cos C[/tex] both side, we have,
[tex]a^2+b^2-c^2=2ab\cos C[/tex]
Thus, The value of [tex]2ab\cos C[/tex] is [tex]a^2+b^2-c^2[/tex]