Respuesta :

[tex]\displaystyle\int_{-3}^3|x+2|\,\mathrm dx[/tex]

Recall the definition of absolute value:

[tex]|x|=\begin{cases}x&\text{for }x\ge0\\-x&\text{for }x<0\end{cases}[/tex]

So we can split up the integration interval at [tex]x=-2[/tex] and apply this definition to rewrite the integral as

[tex]\displaystyle\int_{-3}^{-2}(-(x+2))\,\mathrm dx+\int_{-2}^3(x+2)\,\mathrm dx[/tex]
[tex]=\displaystyle-\int_{-3}^{-2}(x+2)\,\mathrm dx+\int_{-2}^3(x+2)\,\mathrm dx[/tex]
[tex]=-\left(\dfrac12x^2+2x\right)\bigg|_{x=-3}^{x=-2}+\left(\dfrac12x^2+2x\right)\bigg|_{x=-2}^{x=3}[/tex]
[tex]=\dfrac12+\dfrac{25}2=13[/tex]
ACCESS MORE