Respuesta :
Answer:
[tex]\displaystyle A = 2b^3[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
y = 6x²
[0, b]
Step 2: Find Area
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle A = \int\limits^b_0 {6x^2} \, dx[/tex]
- [Integral] Rewrite [integration Property - Multiplied Constant]: [tex]\displaystyle A = 6\int\limits^b_0 {x^2} \, dx[/tex]
- [Integral] integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle A = 6 \bigg( \frac{x^3}{3} \bigg) \bigg| \limits^b_0[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle A = 6 \bigg( \frac{b^3}{3} \bigg)[/tex]
- Simplify: [tex]\displaystyle A = 2b^3[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration