[tex]\tan^2\theta-\sin^2\theta=\dfrac{\sin^2\theta}{\cos^2\theta}-\sin^2\theta[/tex]
[tex]=\sin^2\theta\left(\dfrac1{\cos^2\theta}-1\right)[/tex]
[tex]=\sin^2\theta(\sec^2\theta-1)[/tex]
[tex]=\sin^2\theta\tan^2\theta[/tex]
Now if [tex]0^\circ<\theta<90^\circ[/tex], then both [tex]\sin\theta>0[/tex] and [tex]\tan\theta>0[/tex]. Adding two positive numbers gives another positive number, so [tex]\tan\theta+\sin\theta>0[/tex]. Why this is useful will be apparent shortly.
Back to the identity:
[tex]\tan^2\theta-\sin^2\theta=\tan^2\theta\sin^2\theta[/tex]
Factorizing the left hand side, we have
[tex](\tan\theta-\sin\theta)(\tan\theta+\sin\theta)=\tan^2\theta\sin^2\theta[/tex]
Now, any number squared will be positive, which means the right hand side is necessarily greater than 0.
We showed earlier that [tex]\tan\theta+\sin\theta>0[/tex]. So we understand that we have
[tex]\underbrace{(\tan\theta-\sin\theta)}_?\underbrace{(\tan\theta+\sin\theta)}_+=\underbrace{\tan^2\theta\sin^2\theta}_+[/tex]
The only way to multiply a number by a positive number to get yet another positive number is to have the first number also be positive, which means
[tex]\tan\theta-\sin\theta>0[/tex]
and from this it follows that
[tex]\tan\theta>\sin\theta[/tex]
in the provided region.