1. What are the excluded values?

y+5
________
y^2+4y-32

A) y = -5 and 4
B) y = 5 and 32
C) y = 4 and -8
D) none of the above

2. What are the excluded values?

-7z
___
4z+1

A) z=-4
B) z= -1/4
C) z= -1/7
D) none of the above

3. What are the excluded values?

m+5
______
mn+3m

A) m = -5, n = -3
B) m = 0, n = -3
C) m = -3, n = 0

4. Reduce to lowest terms.

6a^2b^3
______
8ab^4

A) 3b/4a
B) 3a/4b
C) 3/4ab

5. Reduce to lowest terms.

3-k
___
k-3

A) -1
B) 1
C) -1/3

Respuesta :

Answers are as follows
1 C
2 B
3 B
4 B
5 A

Answer:

correct option is (C)

Step-by-step explanation:

Q 1.)

[tex]\frac{y+5}{y^2+4y-32}[/tex]

To find excluded values, we equate denominator of above expression to zero:

[tex]y^2+4y-32=0[/tex]

solve above expression by middle term splitting,

[tex]y^2+8y-4y-32 =0[/tex]

factor out GCF,

[tex]y(y+8)-4(y+8)=0[/tex]

factor out the common terms,

[tex](y+8)(y-4) =0[/tex]

[tex](y+8)=0\,or\,(y-4)=0[/tex]

[tex]y=-8\,or\,y=4[/tex]

Hence, the correct option is (C)

Q 2.)

[tex]\frac{-7z}{4z+1}[/tex]

To find excluded values, we equate denominator of above expression to zero:

[tex]4z+1 =0[/tex]

subtract 1 from both the sides,

[tex]4z+1-1 =-1[/tex]

[tex]4z=-1[/tex]

divide both the side by 4,

[tex]z=\frac{-1}{4}[/tex]

Hence, the correct option is (B).

Q 3.)

[tex]\frac{m+5}{mn+3m}[/tex]

To find excluded values, we equate denominator of above expression to zero:

[tex]mn+3m=0[/tex]

Take common factor out 'm',

[tex]m(n+3)=0[/tex]

[tex]m=0,n+3=0[/tex]

[tex]m=0,n=-3[/tex]

Hence, the correct option is (B)

Q 4.)

[tex]\frac{6a^2b^3}{8ab^4}[/tex]

To reduce tom lowest term, cancel out the common denominators term with numerators;

[tex]\frac{6a^2b^3}{8ab^4}[/tex]

Using the low of exponent \frac{a^n}{a^m}=a^n-m,

[tex]\frac{6a^{2-1}b^{3-4}}{8}[/tex]

[tex]\frac{6a^{1}b^{-1}}{8}[/tex]

so,

[tex]\frac{6a}{8b}[/tex]

[tex]\frac{3a}{4b}[/tex]

Hence, the correct option is (B)

Q 5.)

[tex]\frac{3-k}{k-3}[/tex]

To reduce tom lowest term, cancel out the common denominators term with numerators;

[tex](-1) \frac{k-3}{k-3}[/tex]

[tex]-1[/tex]

Hence, the correct option is (A)