Respuesta :

[tex]\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -----------------------------\\\\ 4x^4-324\implies 4[x^4-81]\quad \begin{cases} x^4\to x\cdot x\cdot x\cdot x\\ \qquad x^2\cdot x^2\\ \qquad (x^2)^2\\\\ 81\to 3\cdot 3\cdot 3\cdot 3\\ \qquad 3^2\cdot 3^2\\ \qquad (3^2)^2 \end{cases} \\\\\\ 4[(x^2)^2-(3^2)^2]\implies 4[\ \underline{x^2-3^2}\ ][\ x^2+3^2\ ] \\\\\\ 4[\ \underline{(x-3)(x+3)}\ ][\ x^2+3^2\ ] \\\\\\ 4(x-3)(x+3)(x^2+9)[/tex]