Respuesta :
[tex]\bf \textit{Double Angle Identities}
\\ \quad \\
\boxed{sin(2\theta)=2sin(\theta)cos(\theta)}
\\ \quad \\
cos(2\theta)=
\begin{cases}
cos^2(\theta)-sin^2(\theta)\\
1-2sin^2(\theta)\\
2cos^2(\theta)-1
\end{cases}
\\ \quad \\
tan(2\theta)=\cfrac{2tan(\theta)}{1-tan^2(\theta)}\\\\
-----------------------------\\\\[/tex]
[tex]\bf 3sin(2x)=5cos(x)\implies 3sin(x)cos(x)=5cos(x) \\\\\\ 3sin(x)cos(x)-5cos(x)=0\implies cos(x)[\ 3sin(x)-5\ ]=0 \\\\\\ thus\quad \begin{cases} cos(x)=0\implies \measuredangle x=cos^{-1}(0)\\ ---------------\\ 3sin(x)-5=0\implies 3sin(x)=5\\\\ sin(x)=\frac{5}{3}\implies \measuredangle x=sin^{-1}\left( \frac{5}{3} \right) \end{cases}[/tex]
the first angle(s), are easy to see, where cosine is 0
the second one, you can plug that in your calculator
[tex]\bf 3sin(2x)=5cos(x)\implies 3sin(x)cos(x)=5cos(x) \\\\\\ 3sin(x)cos(x)-5cos(x)=0\implies cos(x)[\ 3sin(x)-5\ ]=0 \\\\\\ thus\quad \begin{cases} cos(x)=0\implies \measuredangle x=cos^{-1}(0)\\ ---------------\\ 3sin(x)-5=0\implies 3sin(x)=5\\\\ sin(x)=\frac{5}{3}\implies \measuredangle x=sin^{-1}\left( \frac{5}{3} \right) \end{cases}[/tex]
the first angle(s), are easy to see, where cosine is 0
the second one, you can plug that in your calculator
Answer:
x = 56.442690238079284707119200844376
x = 56.44° (Rounding)
Step-by-step explanation:
Solve the equation 3sin(2x) = 5cos(x)
Step 1: Identity sin(2x) = 2sin(x)cos(x)
Step 2: Apply the identity to the equation, substituting sin(2x):
3[2sin(x)cos(x)] = 5cos(x)
Step 3: Multiply left side:
6sin(x)cos(x) = 5cos(x)
Step 4: Move all terms to the left side to get an equation equal to zero:
6sin(x)cos(x) - 5cos(x) = 0
Step 5: Factorize (common factor):
Cos(x)[6sin(x) - 5] = 0
Step 6: Divide the equation by cos(x) (both sides):
Cos(x)[6sin(x) - 5] / cos(x) = 0 / cos(x)
6sin(x) – 5 = 0
Step 7: Isolate sin(x):
6sin(x) = 5
sin(x) = 5/6
sin(x) = 0.8333333333333
Step 8: Calculate x value applying arcsin (Inverse of sin):
Since sin(x) = 0.8333333333333, then
x = arcsin(0.8333333333333)
x = 56.442690238079284707119200844376
x = 56.44° (Rounding)
Step 9: Testing the equation:
3sin(2x) = 5cos(x)
3sin(2*56.44) = 5cos(56.44)
3sin(112.88) = 5(0.55281)
3(0.92132) = 2.764
2.764 = 2.764