Respuesta :
Answer-
The height of the prism is 6 units
Solution-
As the base of the prism is a hexagon consisting of 2 congruent isosceles trapezoids.
So,
[tex]V_{Prism}=Area_{Base}\times Height[/tex]
And,
[tex]Area_{Base}=2\times \text{Area of the trapezoid}[/tex]
Also,
[tex]\text{Area of the trapezoid}=\dfrac{1}{2}\times \text{Height}\times (\text{Sum of two parallel lines})[/tex]
[tex]=\dfrac{1}{2}\times 3\times (5+8)\\\\=\dfrac{39}{2}[/tex]
Putting all the values,
[tex]V_{Prism}=2\times \dfrac{39}{2}\times Height=39\times Height[/tex]
As the volume is given, so
[tex]\Rightarrow 39\times Height=234[/tex]
[tex]\Rightarrow Height=\dfrac{234}{39}=6[/tex]
Answer: Third option is correct.
Step-by-step explanation:
Since we have given that
Height of trapezium = 3 units
and Length of parallel sides are 5 units ad 4+4=8 units.
So, Area of trapezium is given by
[tex]\dfrac{1}{2}\times \text{Sum of parallel sides}\times height\\\\=\dfrac{1}{2}\times (5+8)\times 3\\\\=\dfrac{1}{2}\times 13\times 3\\\\=19.5\ sq.\ units[/tex]
So, we have given that "Volume of prism = 234 cubic units":
[tex]\text{Volume of prism}=\text{Area of base}\times height\\\\234=2\times \text{Area of trapezium}\times height\\\\234=2\times 19.5\times height\\\\234=39\times height\\\\height=\dfrac{234}{39}\\\\height=6\ units[/tex]
Hence, height of prism should be 6 units.
Thus, Third option is correct.