Respuesta :
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\begin{bmatrix}L_{n-1}\\L_{n-2}\end{bmatrix}[/tex]
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^2\begin{bmatrix}L_{n-2}\\L_{n-3}\end{bmatrix}[/tex]
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^3\begin{bmatrix}L_{n-3}\\L_{n-4}\end{bmatrix}[/tex]
[tex]\vdots[/tex]
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\begin{bmatrix}L_1\\L_0\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\begin{bmatrix}1\\2\end{bmatrix}[/tex]
The easiest way to find an integer power of a matrix is to diagonalize the matrix first. If [tex]\mathbf A=\begin{bmatrix}1&1\\1&0\end{bmatrix}=\mathbf{SD}\mathbf S^{-1}[/tex] for some matrix [tex]\mathbf S[/tex] and diagonal matrix [tex]\mathbf D[/tex], then [tex]\mathbf A^n=\mathbf{SD}^n\mathbf S^{-1}[/tex].
You have
[tex]\begin{bmatrix}1&1\\1&0\end{bmatrix}=\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}\begin{bmatrix}\widehat\phi&0\\0&\phi\end{bmatrix}\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}^{-1}[/tex]
which is a result you may have derived in class.
When [tex]n=10[/tex], you have
[tex]\begin{bmatrix}L_{10}\\L_9\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^9\begin{bmatrix}1\\2\end{bmatrix}[/tex]
[tex]\begin{bmatrix}L_{10}\\L_9\end{bmatrix}=\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}\begin{bmatrix}{\widehat\phi}^9&0\\0&\phi^9\end{bmatrix}\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}^{-1}\begin{bmatrix}1\\2\end{bmatrix}[/tex]
[tex]\implies L_{10}=123[/tex]
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^2\begin{bmatrix}L_{n-2}\\L_{n-3}\end{bmatrix}[/tex]
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^3\begin{bmatrix}L_{n-3}\\L_{n-4}\end{bmatrix}[/tex]
[tex]\vdots[/tex]
[tex]\begin{bmatrix}L_n\\L_{n-1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\begin{bmatrix}L_1\\L_0\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^{n-1}\begin{bmatrix}1\\2\end{bmatrix}[/tex]
The easiest way to find an integer power of a matrix is to diagonalize the matrix first. If [tex]\mathbf A=\begin{bmatrix}1&1\\1&0\end{bmatrix}=\mathbf{SD}\mathbf S^{-1}[/tex] for some matrix [tex]\mathbf S[/tex] and diagonal matrix [tex]\mathbf D[/tex], then [tex]\mathbf A^n=\mathbf{SD}^n\mathbf S^{-1}[/tex].
You have
[tex]\begin{bmatrix}1&1\\1&0\end{bmatrix}=\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}\begin{bmatrix}\widehat\phi&0\\0&\phi\end{bmatrix}\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}^{-1}[/tex]
which is a result you may have derived in class.
When [tex]n=10[/tex], you have
[tex]\begin{bmatrix}L_{10}\\L_9\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}^9\begin{bmatrix}1\\2\end{bmatrix}[/tex]
[tex]\begin{bmatrix}L_{10}\\L_9\end{bmatrix}=\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}\begin{bmatrix}{\widehat\phi}^9&0\\0&\phi^9\end{bmatrix}\begin{bmatrix}\widehat\phi&\phi\\1&1\end{bmatrix}^{-1}\begin{bmatrix}1\\2\end{bmatrix}[/tex]
[tex]\implies L_{10}=123[/tex]
Here is an easy way:
2+1=3
3+1=4
4+3=7
7+4=11
11+7=18
18+11=29
29+18=47
47+29=76
76+47=123