Respuesta :
Answer:
[tex]\displaystyle \frac{dy}{dx} = \frac{1}{\sqrt{2x}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \sqrt{2x}[/tex]
Step 2: Differentiate
- Basic Power Rule [Derivative Rule - Chain Rule]: [tex]\displaystyle y' = \frac{1}{2\sqrt{2x}} \cdot \frac{d}{dx}[2x][/tex]
- Basic Power Rule [Derivative Property - Multiplied Constant]: [tex]\displaystyle y' = \frac{1}{2\sqrt{2x}} \cdot 2[/tex]
- Simplify: [tex]\displaystyle y' = \frac{1}{\sqrt{2x}}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation