Respuesta :
ANSWER
The midpoint of both diagonals is
[tex]
(1,0)[/tex]
EXPLANATION
We can use either diagonals to determine the midpoint.
We use the midpoint formula
[tex]
( \frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2} )[/tex]
Let us use the first diagonals H(-2,2) and J(4,-2)
[tex]
( \frac{ - 2 + 4}{2} , \frac{ - 2+ 2}{2} )[/tex]
[tex]
( \frac{ 2}{2} , \frac{ 0}{2} )[/tex]
[tex]
( 1, 0)[/tex]
Using the second diagonals also gives,
[tex]
( \frac{ - 2 + 4}{2} , \frac{ - 3+ 3}{2} )[/tex]
[tex]
( \frac{ 2}{2} , \frac{ 0}{2} )[/tex]
[tex]
( 1, 0)[/tex]
The midpoint of both diagonals is
[tex]
(1,0)[/tex]
EXPLANATION
We can use either diagonals to determine the midpoint.
We use the midpoint formula
[tex]
( \frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2} )[/tex]
Let us use the first diagonals H(-2,2) and J(4,-2)
[tex]
( \frac{ - 2 + 4}{2} , \frac{ - 2+ 2}{2} )[/tex]
[tex]
( \frac{ 2}{2} , \frac{ 0}{2} )[/tex]
[tex]
( 1, 0)[/tex]
Using the second diagonals also gives,
[tex]
( \frac{ - 2 + 4}{2} , \frac{ - 3+ 3}{2} )[/tex]
[tex]
( \frac{ 2}{2} , \frac{ 0}{2} )[/tex]
[tex]
( 1, 0)[/tex]
HIJK is a parallelogram because the midpoint of both diagonals is (1,0)
which means they bisect each other.
Midpoint formula
This formula is used to calculate the midpoints of objects and is given
below:
(x₁+ x₂ /2 ), (y₁+y₂ / 2 )
The first diagonals are H(-2,2) and J(4,-2)
=(-2+4/2), (-2+2/2)
=(2/2, 0/2)
= (1,0)
The second diagonals also gives
=(-2+4/2), (-3+3/2)
=(2/2, 0/2)
= (1,0)
Hence the midpoint is (1,0).
Read more about Midpoint here https://brainly.com/question/24431553