contestada

Suppose that X is a random variable with mean 20 and standard deviation 5. Also
suppose that Y is a random variable with mean 40 and standard deviation 10. Find the
variance and standard deviation of the random variable Z for each of the following
cases. Be sure to show your work.
(a) Z = 2 + 10X.
(b) Z = 10X − 2.
(c) Z = X + Y.
(d) Z = X − Y.
(e) Z = −3X − 2Y.

Respuesta :

Disregard my earlier question.

Recall that the variance of a random variable [tex]X[/tex], denoted [tex]\mathbb V(X)[/tex], is given by

[tex]\mathbb E((X-\mu)^2)[/tex]

where [tex]\mathbb E(X)[/tex] denotes the expected value/mean of [tex]X[/tex], and [tex]\mu=\mathbb E(X)[/tex] is the actual mean of [tex]X[/tex].

Now, recall that

[tex]\mathbb V(X)=\mathbb E((X-\mu)^2)=\mathbb E(X^2-2\mu X+\mu^2)[/tex]
[tex]\mathbb V(X)=\mathbb E(X^2)-2\mu^2+\mu^2[/tex]
[tex]\mathbb V(X)=\mathbb E(X^2)-\mathbb E(X)^2[/tex]

(a) [tex]Z=2+10X[/tex]

[tex]\mathbb V(Z)=\mathbb E((2+10X)^2)-\mathbb E(2+10X)^2[/tex]
[tex]\mathbb V(Z)=\mathbb E(4+40X+100X^2)-(\mathbb E(2)+\mathbb E(10X))^2[/tex]
[tex]\mathbb V(Z)=\mathbb E(4)+40\mathbb E(X)+100\mathbb E(X^2)-(\mathbb E(2)+10\mathbb E(X))^2[/tex]
[tex]\mathbb V(Z)=100\mathbb E(X^2)-40000[/tex]
[tex]\mathbb V(Z)=100\left(\mathbb E(X^2)-\mathbb E(X)^2+\mathbb E(X)^2\right)-40000[/tex]
[tex]\mathbb V(Z)=100\left(\mathbb V(X)+\mathbb E(X)^2\right)-40000[/tex]
[tex]\mathbb V(Z)=100\left(5^2+400\right)-40000[/tex]
[tex]\mathbb V(Z)=2500[/tex]

The standard deviation is the square root of the variance, so for (a) you have

[tex]\sqrt{\mathbb V(Z)}=\sqrt{2500}=50[/tex]

That should give you an idea as to how to figure out the rest.