Respuesta :

Given a solution [tex]y_1(x)=x^4[/tex], we can attempt to find another via reduction of order of the form [tex]y_2(x)=x^4v(x)[/tex]. This has derivatives

[tex]{y_2}'=4x^3v+x^4v'[/tex]
[tex]{y_2}''=12x^2v+8x^3v'+x^4v''[/tex]

Substituting into the ODE yields

[tex]x^2(x^4v''+8x^3v'+12x^2v)-7x(x^4v'+4x^3v)+16x^4v=0[/tex]
[tex]x^6v''+(8x^5-7x^5)v'+(12x^4-28x^4+16x^4)v=0[/tex]
[tex]x^6v''+x^5v'=0[/tex]

Now letting [tex]u(x)=v'(x)[/tex], so that [tex]u'(x)=v''(x)[/tex], you end up with the ODE linear in [tex]u[/tex]

[tex]x^6u'+x^5u=0[/tex]

Assuming [tex]x\neq0[/tex] (which is reasonable, since [tex]x=0[/tex] is a singular point), you can divide through by [tex]x^5[/tex] and end up with

[tex]xu'+u=(xu)'=0[/tex]

and integrating both sides with respect to [tex]x[/tex] gives

[tex]xu=C_1\implies u=\dfrac{C_1}x[/tex]

Back-substitute to solve for [tex]v[/tex]:

[tex]v'=\dfrac{C_1}x\implies v=C_1\ln|x|+C_2[/tex]

and again to solve for [tex]y[/tex]:

[tex]y=x^4v\implies \dfrac y{x^4}=C_1\ln|x|+C_2[/tex]
[tex]\implies y=C_1\underbrace{x^4\ln|x|}_{y_2}+C_2\underbrace{x^4}_{y_1}[/tex]

Alternatively, you can solve this ODE from scratch by employing the Euler substitution (which works because this equation is of the Cauchy-Euler type), [tex]t=\ln x[/tex]. You'll arrive at the same solution, but it doesn't hurt to know there's more than one way to solve this.
ACCESS MORE