Respuesta :

Solve using limits, 0 to 2 and 2 to 10.

ex: M = From 0 to 2 (x^3)dx + From 2 to 10 (10-x)dx

and so on...
That was the biggest problem for me is figuring out the limits, but if you need more help here is an example solution

The centroid of the region will be "[tex](\frac{584}{135} , \frac{496}{189} )[/tex]".

Given curves:

  • [tex]y=x^3[/tex]
  • [tex]x+y = 10[/tex]
  • [tex]y =0[/tex]

Now,

→ [tex]A = \int\limits^2_0 {x^3} \ dx + \int\limits^2_{10} {10-x} \ dx[/tex]

      [tex]= [\frac{1}{4} x^4]^2_0+[10x - \frac{1}{2}x^2 ]^{10}_2[/tex]

      [tex]= 4+(100-20)-(50-2)[/tex]

      [tex]= 36[/tex]

then,

→ [tex]\bar{x} = \frac{1}{A} \int\limits^8_0 \frac{1}{2} ((10-y)^2-y^{\frac{2}{3} })dy[/tex]

      [tex]= \frac{1}{2A} \int\limits^8_0 ( 100-20y+y^2-y^{\frac{2}{3} })dy[/tex]

      [tex]= \frac{1}{2A} [100y-10y^2+\frac{1}{3}y^3 -\frac{3}{5}y^{\frac{5}{3} } ]^8_0[/tex]

      [tex]= \frac{584}{135}[/tex]

→ [tex]\bar{y} = \frac{1}{A} \int\limits^8_0 y (10-y-y^{\frac{1}{3} })dy[/tex]

     [tex]= \frac{1}{A} \int\limits^8_0 (1oy-y^2-y^{\frac{4}{3} })dy[/tex]

     [tex]= \frac{1}{A} [5y^2-\frac{1}{3} y^3 - \frac{3}{7}y^{\frac{7}{3} } ]^8_0[/tex]

     [tex]= \frac{496}{189}[/tex]

Thus the above answer is appropriate.

Learn more about centroid here:

https://brainly.com/question/5872501

Ver imagen Cricetus
ACCESS MORE
EDU ACCESS