Respuesta :
Answer:
[tex]6*10^8[/tex] is 200 times larger than [tex]3*10^6[/tex]
Step-by-step explanation:
[tex]6*10^8\ and \ 3*10^6[/tex]
To compare both values we divide the exponents
[tex]\frac{6*10^8}{3*10^6}[/tex]
6 divide by 3 is 2
for simplify exponents we use exponential property
a^m / a^n = a^(m-n)
[tex]\frac{10^8}{10^6}=10^2[/tex]
[tex]\frac{6*10^8}{3*10^6}=2*10^2= 200[/tex]
[tex]6*10^8[/tex] is 200 times larger than [tex]3*10^6[/tex]
Answer:
Option B.
Step-by-step explanation:
The given numbers are [tex]6\cdot 10^8[/tex] and [tex]3\cdot 10^6[/tex].
Let [tex]6\cdot 10^8[/tex] is x times larger than [tex]3\cdot 10^6[/tex].
[tex]x\times 3\cdot 10^6=6\cdot 10^8[/tex]
Divide both sides by [tex]3\cdot 10^6[/tex].
[tex]x=\dfrac{6\cdot 10^8}{3\cdot 10^6}[/tex]
[tex]x=2\cdot \dfrac{10^8}{10^6}[/tex]
Using the property of exponent, we get
[tex]x=2\cdot 10^{8-6}[/tex] [tex](\because \dfrac{a^m}{a^n}=a^{m-n})[/tex]
[tex]x=2\cdot 10^2[/tex]
[tex]x=2\cdot 100[/tex]
[tex]x=200[/tex]
[tex]6\cdot 10^8[/tex] is 200 times larger than [tex]3\cdot 10^6[/tex].
Therefore, the correct option is B.