Compare 6 ⋅ 108 to 3 ⋅ 106.

6 ⋅ 108 is 2,000 times larger than 3 ⋅ 106.
6 ⋅ 108 is 200 times larger than 3 ⋅ 106.
6 ⋅ 108 is 20 times larger than 3 ⋅ 106.
6 ⋅ 108 is 2 times larger than 3 ⋅ 106.

Respuesta :

Answer:

[tex]6*10^8[/tex]  is 200 times larger than  [tex]3*10^6[/tex]

Step-by-step explanation:

[tex]6*10^8\ and \ 3*10^6[/tex]

To compare both values we divide the exponents

[tex]\frac{6*10^8}{3*10^6}[/tex]

6 divide by 3 is 2

for simplify exponents we use exponential property

a^m / a^n = a^(m-n)

[tex]\frac{10^8}{10^6}=10^2[/tex]

[tex]\frac{6*10^8}{3*10^6}=2*10^2= 200[/tex]

[tex]6*10^8[/tex]  is 200 times larger than  [tex]3*10^6[/tex]

Answer:

Option B.

Step-by-step explanation:

The given numbers are [tex]6\cdot 10^8[/tex] and [tex]3\cdot 10^6[/tex].

Let [tex]6\cdot 10^8[/tex] is x times larger than [tex]3\cdot 10^6[/tex].

[tex]x\times 3\cdot 10^6=6\cdot 10^8[/tex]

Divide both sides by [tex]3\cdot 10^6[/tex].

[tex]x=\dfrac{6\cdot 10^8}{3\cdot 10^6}[/tex]

[tex]x=2\cdot \dfrac{10^8}{10^6}[/tex]

Using the property of exponent, we get

[tex]x=2\cdot 10^{8-6}[/tex]             [tex](\because \dfrac{a^m}{a^n}=a^{m-n})[/tex]

[tex]x=2\cdot 10^2[/tex]

[tex]x=2\cdot 100[/tex]

[tex]x=200[/tex]

[tex]6\cdot 10^8[/tex] is 200 times larger than [tex]3\cdot 10^6[/tex].

Therefore, the correct option is B.

ACCESS MORE
EDU ACCESS
Universidad de Mexico