Answer:
Approximately [tex]2.3 \times 10^{8}\; {\rm m\cdot s^{-1}}[/tex].
Explanation:
The refractive index of a material is inversely proportional to the speed of light in that material.
If the speed of light in a given material is [tex]v[/tex], the refractive index [tex]n[/tex] of that material would be:
[tex]\begin{aligned} n &= \frac{c}{v}\end{aligned}[/tex],
Where [tex]c \approx 3.00 \times 10^{8}\; {\rm m\cdot s^{-1}}[/tex] is the speed of light in vacuum.
Rearrange this equation to find the speed of light in the given material (ice) given the refractive index of that material:
[tex]\begin{aligned}v &= \frac{c}{n} \\ &\approx \frac{3.00 \times 10^{8}}{1.3} \; {\rm m\cdot s^{-1}} \\ &\approx 2.3 \times 10^{8}\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].