To find the probability that Naomi selects both white balls, we need to consider the total number of possible outcomes and the number of favorable outcomes.
Total number of outcomes:
Naomi selects 2 balls without replacement, so the total number of outcomes is the number of ways she can choose 2 balls out of the total number of balls in the bag. This can be calculated using combinations:
Total outcomes = C(20, 2) = (20!)/(2!(20-2)!) = (20 * 19)/(2 * 1) = 190
Number of favorable outcomes:
Naomi needs to select 2 white balls. There are 2 white balls in the bag, so the number of favorable outcomes is the number of ways she can choose 2 white balls out of the 2 white balls in the bag:
Favorable outcomes = C(2, 2) = 1
Probability = Favorable outcomes / Total outcomes = 1/190
Therefore, the correct answer is (G) 1/190.