Given the lengths of two sides of a triangle. write an inequality to indicate between which two numbers the length of the third side must fall. a.8 and 13. b.11.5 and 23.6. c.22 and 15. d.13.2 and 6.7. e.23 and 44

Respuesta :

Answer:

  • 5 < x < 21
  • 12.1 < x < 35.1
  • 7 < x < 37
  • 6.5 < x < 19.9
  • 21 < x < 67

Step-by-step explanation:

Given pairs of side lengths that represent two sides of a triangle, you want an inequality representing possible lengths for the third side.

Triangle inequality

The triangle inequality requires the sum of the two shortest sides be greater than the longest side. Translated to this problem, it means the third side must have a length between the difference and the sum of the other two sides. For third side x, we require ...

a. 8 and 13

  13 -8 < x < 13 +8

  5 < x < 21

b. 11.5 and 23.6

  23.6 -11.5 < x < 23.6 +11.5

  12.1 < x < 35.1

c. 22 and 15

  22 -15 < x < 22 +15

  7 < x < 37

d. 13.2 and 6.7

  13.2 -6.7 < x < 13.2 +6.7

  6.5 < x < 19.9

e. 23 and 44

  44 -23 < x < 44 +23

  21 < x < 67

<95141404393>

Ver imagen sqdancefan