Respuesta :
Answer: (1 - cos x)/cos^2 x
Step-by-step explanation: We can start by using the identity csc^2 x = 1/sin^2 x and cot^2 x = cos^2 x/sin^2 x to rewrite the expression as (1/sin^2 x) * sin^2(/2 - x) * (cos^2 x/sin^2 x)^-1. Then, we can simplify sin^2(/2 - x) to 1 - cos x and simplify the denominator to (1 - cos^2 x)/sin^2 x.
Finally, we can simplify the denominator to sin^2 x and cancel out the sin^2 x in the numerator and denominator, leaving us with (1 - cos x)/cos^2 x.
Answer:
[tex]\dfrac{\csc^2 x \cdot \sin^2\left(\frac{\pi}{2}-x\right)}{\cot^2x}=1[/tex]
Step-by-step explanation:
Given rational trigonometric expression:
[tex]\dfrac{\csc^2 x \cdot \sin^2\left(\frac{\pi}{2}-x\right)}{\cot^2x}[/tex]
Use the following trigonometric identities to rewrite the expression:
[tex]\boxed{\begin{minipage}{5 cm}\underline{Trigonometric identities}\\\\$\cos x=\sin \left(\frac{\pi}{2}-x\right)$\\\\$\csc x=\dfrac{1}{\sin x}$\\\\\\$\cot x=\dfrac{\cos x}{\sin x}$\\\end{minipage}}[/tex]
Therefore:
[tex]\dfrac{\csc^2 x \cdot \sin^2\left(\frac{\pi}{2}-x\right)}{\cot^2x}[/tex]
[tex]=\dfrac{\left(\dfrac{1}{\sin x}\right)^2 \cdot (\cos x)^2}{\left(\dfrac{\cos x}{\sin x}\right)^2}[/tex]
[tex]\textsf{Apply the exponent rule:} \quad \left(\dfrac{a}{b}\right)^c=\dfrac{a^c}{b^c}[/tex]
[tex]=\dfrac{\dfrac{1}{\sin^2x} \cdot \cos^2x}{\dfrac{\cos^2x}{\sin^2x}}[/tex]
Simplify the numerator:
[tex]=\dfrac{\dfrac{\cos^2x}{\sin^2x}}{\dfrac{\cos^2x}{\sin^2x}}[/tex]
[tex]\textsf{Apply the fraction rule:}\;\; \dfrac{a}{a}=1[/tex]
[tex]=1[/tex]
Therefore:
[tex]\boxed{\dfrac{\csc^2 x \cdot \sin^2\left(\frac{\pi}{2}-x\right)}{\cot^2x}=1}[/tex]