[tex]x^2y'=y\sqrt{25-x^2}[/tex]
This ODE is separable. You can write
[tex]\dfrac{\mathrm dy}y=\dfrac{\sqrt{25-x^2}}{x^2}\,\mathrm dx[/tex]
Integrating both sides gives
[tex]\ln|y|=-\dfrac{\sqrt{25-x^2}}x-\arcsin\dfrac x5+C[/tex]
Given that [tex]y(1)=1[/tex], you find
[tex]\ln1=-\sqrt{24}-\arcsin\dfrac15+C[/tex]
[tex]\implies C=\sqrt{24}+\arcsin\dfrac15[/tex]