Respuesta :
Recall that converting from Cartesian to polar coordinates involves the identities
[tex]\begin{cases}y(r,\phi)=r\sin\phi\\x(r,\phi)=r\cos\phi\end{cases}[/tex]
As a function in polar coordinates, [tex]r[/tex] depends on [tex]\phi[/tex], so you can write [tex]r=r(\phi)[/tex].
Differentiating the identities with respect to [tex]\phi[/tex] gives
[tex]\begin{cases}\dfrac{\mathrm dy}{\mathrm d\phi}=\dfrac{\mathrm dr}{\mathrm d\phi}\sin\phi+r\cos\phi\\\\\dfrac{\mathrm dx}{\mathrm d\phi}=\dfrac{\mathrm dr}{\mathrm d\phi}\cos\phi-r\sin\phi\end{cases}[/tex]
The slope of the tangent line to [tex]r(\phi)[/tex] is given by
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm d\phi}}{\frac{\mathrm dx}{\mathrm d\phi}}=\dfrac{\frac{\mathrm dr}{\mathrm d\phi}\sin\phi+r\cos\phi}{\frac{\mathrm dr}{\mathrm d\phi}\cos\phi-r\sin\phi}[/tex]
Given [tex]r(\phi)=3\cos\phi[/tex], you have [tex]\dfrac{\mathrm dr}{\mathrm d\phi}=-3\sin\phi[/tex]. So the tangent line to [tex]r(\phi)[/tex] has a slope of
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{-3\sin^2\phi+3\cos^2\phi}{-3\sin\phi\cos\phi-3\cos\phi\sin\phi}=\dfrac{3\cos2\phi}{-3\sin2\phi}=-\cot2\phi[/tex]
When [tex]\phi=120^\circ=\dfrac{2\pi}3\text{ rad}[/tex], the tangent line has slope
[tex]\dfrac{\mathrm dy}{\mathrm dx}=-\cot\dfrac{4\pi}3=-\dfrac1{\sqrt3}[/tex]
This line is tangent to the point [tex](r,\phi)=\left(-\dfrac32,\dfrac{2\pi}3\right)[/tex] which in Cartesian coordinates is equivalent to [tex](x,y)=\left(\dfrac34,-\dfrac{3\sqrt3}4\right)[/tex], so the equation of the tangent line is
[tex]y+\dfrac{3\sqrt3}4=-\dfrac1{\sqrt3}\left(x-\dfrac34\right)[/tex]
In polar coordinates, this line has equation
[tex]r\sin\phi+\dfrac{3\sqrt3}4=-\dfrac1{\sqrt3}\left(r\cos\phi-\dfrac34\right)[/tex]
[tex]\implies r=-\dfrac{3\sqrt3}{2\sqrt3\cos\phi+6\sin\phi}[/tex]
The tangent line passes through the y-axis when [tex]x=0[/tex], so the y-intercept is [tex]\left(0,-\dfrac{\sqrt3}2\right)[/tex].
The vector from this point to the point of tangency on [tex]r(\phi)[/tex] is given by the difference of the vector from the origin to the y-intercept (which I'll denote [tex]\mathbf a[/tex]) and the vector from the origin to the point of tangency (denoted by [tex]\mathbf b[/tex]). In the attached graphic, this corresponds to the green arrow.
[tex]\mathbf b-\mathbf a=\left(\dfrac34,-\dfrac{3\sqrt3}4\right)-\left(0,-\dfrac{\sqrt3}2\right)=\left(\dfrac34,-\dfrac{\sqrt3}4\right)[/tex]
The angle between this vector and the vector pointing to the point of tangency is what you're looking for. This is given by
[tex]\mathbf b\cdot(\mathbf b-\mathbf a)=\|\mathbf b\|\|\mathbf b-\mathbf a\|\cos\theta[/tex]
[tex]\dfrac98=\dfrac{3\sqrt3}4\cos\theta[/tex]
[tex]\implies\theta=\dfrac\pi6\text{ rad}=30^\circ[/tex]
The second problem is just a matter of computing the second derivative of [tex]\phi[/tex] with respect to [tex]t[/tex] and plugging in [tex]t=2[/tex].
[tex]\phi(t)=2t^3-6t[/tex]
[tex]\phi'(t)=6t^2-6[/tex]
[tex]\phi''(t)=12t[/tex]
[tex]\implies\phi''(2)=24[/tex]
[tex]\begin{cases}y(r,\phi)=r\sin\phi\\x(r,\phi)=r\cos\phi\end{cases}[/tex]
As a function in polar coordinates, [tex]r[/tex] depends on [tex]\phi[/tex], so you can write [tex]r=r(\phi)[/tex].
Differentiating the identities with respect to [tex]\phi[/tex] gives
[tex]\begin{cases}\dfrac{\mathrm dy}{\mathrm d\phi}=\dfrac{\mathrm dr}{\mathrm d\phi}\sin\phi+r\cos\phi\\\\\dfrac{\mathrm dx}{\mathrm d\phi}=\dfrac{\mathrm dr}{\mathrm d\phi}\cos\phi-r\sin\phi\end{cases}[/tex]
The slope of the tangent line to [tex]r(\phi)[/tex] is given by
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\frac{\mathrm dy}{\mathrm d\phi}}{\frac{\mathrm dx}{\mathrm d\phi}}=\dfrac{\frac{\mathrm dr}{\mathrm d\phi}\sin\phi+r\cos\phi}{\frac{\mathrm dr}{\mathrm d\phi}\cos\phi-r\sin\phi}[/tex]
Given [tex]r(\phi)=3\cos\phi[/tex], you have [tex]\dfrac{\mathrm dr}{\mathrm d\phi}=-3\sin\phi[/tex]. So the tangent line to [tex]r(\phi)[/tex] has a slope of
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{-3\sin^2\phi+3\cos^2\phi}{-3\sin\phi\cos\phi-3\cos\phi\sin\phi}=\dfrac{3\cos2\phi}{-3\sin2\phi}=-\cot2\phi[/tex]
When [tex]\phi=120^\circ=\dfrac{2\pi}3\text{ rad}[/tex], the tangent line has slope
[tex]\dfrac{\mathrm dy}{\mathrm dx}=-\cot\dfrac{4\pi}3=-\dfrac1{\sqrt3}[/tex]
This line is tangent to the point [tex](r,\phi)=\left(-\dfrac32,\dfrac{2\pi}3\right)[/tex] which in Cartesian coordinates is equivalent to [tex](x,y)=\left(\dfrac34,-\dfrac{3\sqrt3}4\right)[/tex], so the equation of the tangent line is
[tex]y+\dfrac{3\sqrt3}4=-\dfrac1{\sqrt3}\left(x-\dfrac34\right)[/tex]
In polar coordinates, this line has equation
[tex]r\sin\phi+\dfrac{3\sqrt3}4=-\dfrac1{\sqrt3}\left(r\cos\phi-\dfrac34\right)[/tex]
[tex]\implies r=-\dfrac{3\sqrt3}{2\sqrt3\cos\phi+6\sin\phi}[/tex]
The tangent line passes through the y-axis when [tex]x=0[/tex], so the y-intercept is [tex]\left(0,-\dfrac{\sqrt3}2\right)[/tex].
The vector from this point to the point of tangency on [tex]r(\phi)[/tex] is given by the difference of the vector from the origin to the y-intercept (which I'll denote [tex]\mathbf a[/tex]) and the vector from the origin to the point of tangency (denoted by [tex]\mathbf b[/tex]). In the attached graphic, this corresponds to the green arrow.
[tex]\mathbf b-\mathbf a=\left(\dfrac34,-\dfrac{3\sqrt3}4\right)-\left(0,-\dfrac{\sqrt3}2\right)=\left(\dfrac34,-\dfrac{\sqrt3}4\right)[/tex]
The angle between this vector and the vector pointing to the point of tangency is what you're looking for. This is given by
[tex]\mathbf b\cdot(\mathbf b-\mathbf a)=\|\mathbf b\|\|\mathbf b-\mathbf a\|\cos\theta[/tex]
[tex]\dfrac98=\dfrac{3\sqrt3}4\cos\theta[/tex]
[tex]\implies\theta=\dfrac\pi6\text{ rad}=30^\circ[/tex]
The second problem is just a matter of computing the second derivative of [tex]\phi[/tex] with respect to [tex]t[/tex] and plugging in [tex]t=2[/tex].
[tex]\phi(t)=2t^3-6t[/tex]
[tex]\phi'(t)=6t^2-6[/tex]
[tex]\phi''(t)=12t[/tex]
[tex]\implies\phi''(2)=24[/tex]
