Answer:
[tex]xy-2x^2+4y^2=C[/tex]
Step-by-step explanation:
Solve the given differential equation.
[tex](x+8y)\frac{dy}{dx} = 4x-y[/tex]
(1) - Rearrange the differential equation
[tex](x+8y)\frac{dy}{dx} = 4x-y\\\\\Longrightarrow (x+8y)dy=(4x-y)dx\\\\\Longrightarrow -(4x-y)dx+ (x+8y)dy\\\\\Longrightarrow \boxed{ (-4x+y)dx+ (x+8y)dy}[/tex]
(2) - Check to see if this is an exact differential equation
[tex]M=-4x+y \ and \ N=x+8y \ \text{the DE is exact if} \ M_y=N_x\\\\\left\begin{array}{ccc}M_y=1\\N_x=1\end{array}\right\} \ M_y=N_x \therefore \ Exact[/tex]
(3) - Integrate M with respect to x and N with respect to y
[tex]\int(-4x+y)dx\\\\\Longrightarrow \boxed{ -2x^2+xy}\\\\\int(x+8y)dy\\\\\Longrightarrow \boxed{xy+4y^2}[/tex]
(4) Form the solution. The solution will be the two evaluated integrals from above added together ignoring any duplicate terms
[tex]\therefore \boxed{\boxed{xy-2x^2+4y^2=C}}[/tex]