Pls help
Prove the trigonometric identity
csc x cos x/tan x+cot x =cos^2 x
Drag the expressions into each box to complete the proof.

Pls helpProve the trigonometric identitycsc x cos xtan xcot x cos2 xDrag the expressions into each box to complete the proof class=

Respuesta :

msm555

Answer:

Here is the proof of the trigonometric identity

[tex]\frac{\csc x \cos x}{\tan x + \cot x} = \cos^2 x[/tex]

Given:

[tex]\frac{\csc x \cos x}{\tan x + \cot x}[/tex]

To prove:

[tex]\frac{\csc x \cos x}{\tan x + \cot x} = \cos^2x[/tex]

Step 1: Rewrite all trigonometric functions in terms of sine and cosine.

[tex]\frac{\csc x \cos x}{\tan x + \cot x} \\ = \frac{\frac{1}{\sin x} \cos x}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}} \\ = \frac{\cos x}{\sin x \cdot \frac{\sin x}{\cos x} + \cos x \cdot \frac{\cos x}{\sin x}} \\ \\ = \frac{\cos x}{\frac{\sin^2 x + \cos^2 x}{\sin x \cos x}} \\ \\ = \frac{\cos x}{\frac{1}{\sin x \cos x}} \\ \\ = \cos x \cdot \sin x \cos x \\ \\ = \cos^2 x [/tex]

Step 2:Simplify the expression.

[tex]\cos^2 x = \cos^2 x[/tex]

Conclusion:Therefore,

[tex]\frac{\csc x \cos x}{\tan x + \cot x} = \cos^2 x.[/tex]

Hence Proved:

Answer:

[tex]\dfrac{ \csc x \cos x}{\tan x + \cot x}=\cos^2 x[/tex][tex]\textsf{Rewrite $\csc x=\dfrac{1}{\sin x}}, \tan x=\dfrac{\sin x}{\cos x}$, and $\cot x=\dfrac{\cos x}{\sin x}$:}[/tex]

[tex]\boxed{\dfrac{ \dfrac{1}{\sin x} \cdot \cos x}{\dfrac{\sin x}{\cos x} + \dfrac{\cos x}{\sin x}}}=\cos^2 x[/tex]

[tex]\boxed{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\sin^2 x }{\sin x + \cos x}+\dfrac{\cos^2 x }{\sin x + \cos x}}}=\cos^2 x[/tex]

[tex]\boxed{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\sin^2 x + \cos^2 x}{\sin x + \cos x}}}=\cos^2 x[/tex]

[tex]\boxed{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{1}{\sin x + \cos x}}}=\cos^2 x[/tex]

[tex]\boxed{\dfrac{\cos x}{\sin x} \cdot \sin x \cos x}=\cos^2 x[/tex]

[tex]\cos^2 x=\cos^2 x[/tex]

Step-by-step explanation:

Given trigonometric identity:

[tex]\dfrac{ \csc x \cos x}{\tan x + \cot x}=\cos^2 x[/tex]

[tex]\textsf{Use the identities\;\;$\csc x=\dfrac{1}{\sin x}$\;,\;$\tan x = \dfrac{\sin x}{\cos x}$\;\;and\;\;$\cot x=\dfrac{\cos x}{\sin x}$}:[/tex]

[tex]\textsf{Rewrite $\csc x=\dfrac{1}{\sin x}}, \tan x=\dfrac{\sin x}{\cos x}$, and $\cot x=\dfrac{\cos x}{\sin x}$:}[/tex]

[tex]\boxed{\dfrac{ \dfrac{1}{\sin x} \cdot \cos x}{\dfrac{\sin x}{\cos x} + \dfrac{\cos x}{\sin x}}}=\cos^2 x[/tex]

Simplify the numerator and make the fractions in the denominator like fractions:

[tex]\boxed{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\sin^2 x }{\sin x + \cos x}+\dfrac{\cos^2 x }{\sin x + \cos x}}}=\cos^2 x[/tex]

[tex]\textsf{Apply\;the\;fraction\;rule\;\;$\dfrac{a}{b}+\dfrac{c}{b}=\dfrac{a+c}{b}$\;to\;the\;denominator}:[/tex]

[tex]\boxed{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{\sin^2 x + \cos^2 x}{\sin x + \cos x}}}=\cos^2 x[/tex]

[tex]\textsf{Use\;the\;identity\;\;$\sin^2x+\cos^2x=1$}:[/tex]

[tex]\boxed{\dfrac{\dfrac{\cos x}{\sin x}}{\dfrac{1}{\sin x + \cos x}}}=\cos^2 x[/tex]

[tex]\textsf{Apply\;the\;fraction\;rule\;\;$\dfrac{a}{\frac{b}{c}}=a \cdot \dfrac{c}{b}$}:[/tex]

[tex]\boxed{\dfrac{\cos x}{\sin x} \cdot \sin x \cos x}=\cos^2 x[/tex]

Cancel the common factor sin x, and apply the exponent rule aa = a²:

[tex]\cos^2 x=\cos^2 x[/tex]