Answer:
[tex]V=2\frac{47}{64}ft^{3}[/tex]
Step-by-step explanation:
The volume of a rectangular prism is defined as
[tex]V=l \times w \times h[/tex]
Where [tex]l[/tex] is length, [tex]w[/tex] is width and [tex]h[/tex] is height.
In this case, the dimensions are
[tex]1\frac{1}{4}ft[/tex], [tex]1\frac{3}{4}ft[/tex] and [tex]1\frac{1}{4}ft[/tex].
First, we need to transform all mixed numbers into fractions.
[tex]1\frac{1}{4}ft =\frac{5}{4}ft[/tex]
[tex]1\frac{3}{4}ft=\frac{7}{4}ft[/tex]
So, using the formula
[tex]V=l \times w \times h=\frac{5}{4}ft \times \frac{7}{4}ft \times \frac{5}{4}ft=\frac{175}{64}ft^{3}\\V=2\frac{47}{64}ft^{3}[/tex]
Therefore, the volume of the suitcase is [tex]V=2\frac{47}{64}ft^{3}[/tex]