Respuesta :

You have one mistake which occurs when you integrate [tex]\dfrac1{1-p^2}[/tex]. The antiderivative of this is not in terms of [tex]\tan^{-1}p[/tex]. Instead, letting [tex]p=\sin r[/tex] (or [tex]\cos r[/tex], if you want to bother with more signs) gives [tex]\mathrm dp=\cos r\,\mathrm dr[/tex], making the indefinite integral equality

[tex]\displaystyle-\frac12\int\frac{\mathrm dp}{1-p^2}=-\frac12\int\frac{\cos r}{1-\sin^2r}\,\mathrm dr=-\frac12\int\sec r\,\mathrm dr=\ln|\sec r+\tan r|+C[/tex]

and then compute the definite integral from there.

[tex]-\dfrac12\ln|\sec r+\tan r|\stackrel{r=\sin^{-1}p}=-\dfrac12\ln\left|\dfrac{1+p}{\sqrt{1-p^2}}=\ln\left|\sqrt{\dfrac{1+p}{1-p}}\right|[/tex]
[tex]\stackrel{p=u/2}=-\dfrac12\ln\left|\sqrt{\dfrac{1+\frac u2}{1-\frac u2}}\right|=-\dfrac12\ln\left|\sqrt{\dfrac{2+u}{2-u}}\right|[/tex]
[tex]\stackrel{u=x+1}=-\dfrac12\ln\left|\sqrt{\dfrac{3+x}{1-x}}\right|[/tex]
[tex]\implies-\dfrac12\displaystyle\lim_{t\to\infty}\ln\left|\sqrt{\dfrac{3+x}{1-x}}\right|\bigg|_{x=2}^{x=t}=-\frac12\left(\ln|-1|-\ln\left|\sqrt{\frac5{-1}}\right|\right)=\dfrac{\ln\sqrt5}2=\dfrac{\ln5}4[/tex]

Or, starting from the beginning, you could also have found it slightly more convenient to combine the substitutions in one fell swoop by letting [tex]x+1=2\sec y[/tex]. Then [tex]\mathrm dx=2\sec y\tan y\,\mathrm dy[/tex], and the integral becomes

[tex]\displaystyle\int_2^\infty\frac{\mathrm dx}{(x+1)^2-4}=\int_{\sec^{-1}(3/2)}^{\pi/2}\frac{2\sec y\tan y}{4\sec^2y-4}\,\mathrm dy[/tex]
[tex]\displaystyle=\frac12\int_{\sec^{-1}(3/2)}^{\pi/2}\csc y\,\mathrm dy[/tex]
[tex]\displaystyle=-\frac12\ln|\csc y+\cot y|\bigg|_{y=\sec^{-1}(3/2}}^{y=\pi/2}[/tex]
[tex]\displaystyle=-\frac12\lim_{t\to\pi/2^-}\ln|\csc y+\cot y|\bigg|_{y=\sec^{-1}(3/2)}^{y=t}[/tex]
[tex]\displaystyle=-\frac12\left(\lim_{t\to\pi/2^-}\ln|\csc t+\cot t|-\ln\frac5{\sqrt5}\right)[/tex]
[tex]=\dfrac{\ln\sqrt5}2-\dfrac{\ln|1|}2[/tex]
[tex]=\dfrac{\ln5}4[/tex]

Another way to do this is to notice that the integrand's denominator can be factorized.

[tex]x^2+2x-3=(x+3)(x-1)[/tex]

So,

[tex]\dfrac1{x^2+2x-3}=\dfrac1{(x+3)(x-1)}=\dfrac14\left(\dfrac1{x-1}-\dfrac1{x+3}\right)[/tex]

There are no discontinuities to worry about since you're integrate over [tex][2,\infty)[/tex], so you can proceed with integrating straightaway.

[tex]\displaystyle\int_2^\infty\frac{\mathrm dx}{x^2+2x-3}=\frac14\lim_{t\to\infty}\int_2^t\left(\frac1{x-1}-\frac1{x+3}\right)\,\mathrm dx[/tex]
[tex]=\displaystyle\frac14\lim_{t\to\infty}(\ln|x-1|-\ln|x+3|)\bigg|_{x=2}^{x=t}[/tex]
[tex]=\displaystyle\frac14\lim_{t\to\infty}\ln\left|\frac{x-1}{x+3}\right|\bigg|_{x=2}^{x=t}[/tex]
[tex]=\displaystyle\frac14\left(\lim_{t\to\infty}\ln\left|\frac{t-1}{t+3}\right|-\ln\frac15\right)[/tex]
[tex]=\displaystyle\frac14\left(\ln1-\ln\frac15\right)[/tex]
[tex]=-\dfrac14\ln\dfrac15=\dfrac{\ln5}4[/tex]

Just goes to show there's often more than one way to skin a cat...
RELAXING NOICE
Relax