Answer:
Approximately [tex]2.4 \times 10^{4}\; {\rm N}[/tex].
Explanation:
Assume that the acceleration [tex]a[/tex] of the cannonball is constant while in the muzzle. Apply the following SUVAT equation to find this acceleration:
[tex]v^{2} - u^{2} = 2\, a\, x[/tex].
[tex]\displaystyle a = \frac{v^{2} - u^{2}}{2\, x}[/tex],
Where:
Thus, under the assumptions, acceleration of the cannonball in the muzzle would be:
[tex]\begin{aligned} a &= \frac{v^{2} - u^{2}}{2\, x} \\ &= \frac{150^{2} - 0^{2}}{2\, (2.6)}\; {\rm m\cdot s^{-2}} \\ &\approx 4.33 \times 10^{3}\; {\rm m\cdot s^{-2}}\end{aligned}[/tex].
It is given that the mass of this cannonball is [tex]m = 5.5\; {\rm kg}[/tex]. By Newton's Laws of Motion, the net force on the cannonball would be:
[tex]\begin{aligned}F_{\text{net}} &= m\, a \\ &\approx (5.5)\, (4.33 \times 10^{3})\; {\rm N} \\ &\approx 2.4 \times 10^{4}\; {\rm N}\end{aligned}[/tex].