Respuesta :

There are two ways you can go about this: I'll explain both ways.

Solution 1: Using logarithmic properties
The first way is to use logarithmic properties.

We can take the natural logarithm to all three terms to utilise our exponents.

Hence, ln2ᵃ = ln5ᵇ = ln10ⁿ becomes:
aln2 = bln5 = nln10.

What's so neat about ln10 is that it's ln(5·2).
Using our logarithmic rule (log(ab) = log(a) + log(b),
we can rewrite it as aln2 = bln5 = n(ln2 + ln5)

Since it's equal (given to us), we can let it all equal to another variable "c".

So, c = aln2 = bln5 = n(ln2 + ln5) and the reason why we do this, is so that we may find ln2 and ln5 respectively.

c = aln2; ln2 = [tex] \frac{c}{a} [/tex]
c = bln5; ln5 = [tex] \frac{c}{b} [/tex]

Hence, c = n(ln2 + ln5) = n([tex] \frac{c}{a} [/tex] + [tex] \frac{c}{b} [/tex])
Factorise c outside on the right hand side.

c = cn([tex] \frac{1}{a} [/tex] + [tex] \frac{1}{b} [/tex])
1 = n([tex] \frac{1}{a} [/tex] + [tex] \frac{1}{b} [/tex])
[tex] \frac{1}{n} [/tex] = [tex] \frac{1}{a} [/tex] + [tex] \frac{1}{b} [/tex]

[tex] \frac{1}{n} [/tex] = [tex] \frac{a + b}{ab}[/tex]
and thus, n = [tex] \frac{ab}{a + b} [/tex]

Solution 2: Using exponent rules
In this solution, we'll be taking advantage of exponents.

So, let c = 2ᵃ = 5ᵇ = 10ⁿ
Since c = 2ᵃ, 2 = [tex] \sqrt[a]{c} [/tex] = [tex] c^{\frac{1}{a}} [/tex]

Then, 5 = [tex] c^{\frac{1}{b}} [/tex]
and 10 = [tex] c^{\frac{1}{n}} [/tex]

But, 10 = 5·2, so 10 = [tex] c^{\frac{1}{b}} [/tex]·[tex] c^{\frac{1}{a}} [/tex]
∴ [tex] c^{\frac{1}{n}} [/tex] = [tex] c^{\frac{1}{b}} [/tex]·[tex] c^{\frac{1}{a}} [/tex]

[tex] \frac{1}{n} [/tex] = [tex] \frac{1}{a} [/tex] + [tex] \frac{1}{b} [/tex]
and n = [tex] \frac{ab}{a + b} [/tex]
ACCESS MORE
EDU ACCESS
Universidad de Mexico