Respuesta :
Answer:
The half life of the sample is 6301 years.
Step-by-step explanation:
The function used to model radioactive decay or exponential decay is,
[tex]Q(t)=Q_0e^{-k\cdot t}[/tex]
Where,
Q(t) = Quantity after t time
Q₀ = Initial
k = decay constant
t = time period
As after an half life, the amount becomes half so,
[tex]\Rightarrow \dfrac{Q_0}{2}=Q_0e^{-0.00011\cdot t}[/tex]
[tex]\Rightarrow \dfrac{1}{2}=e^{-0.00011\cdot t}[/tex]
Taking natural log of both sides,
[tex]\Rightarrow \ln \dfrac{1}{2}=\ln e^{-0.00011\cdot t}[/tex]
[tex]\Rightarrow \ln \dfrac{1}{2}={-0.00011\cdot t}\times \ln e[/tex]
[tex]\Rightarrow \ln \dfrac{1}{2}={-0.00011\cdot t}\times 1[/tex]
[tex]\Rightarrow {-0.00011\cdot t}=\ln \dfrac{1}{2}[/tex]
[tex]\Rightarrow t=\dfrac{\ln \dfrac{1}{2}}{-0.00011}[/tex]
[tex]\Rightarrow t=6301.3\approx 6301\ years[/tex]
Answer:
I ts 6,301 years
Step-by-step explanation:
I got it right on a p e x
