Respuesta :
Answer:
Approximately [tex]3.2\; {\rm mm}[/tex].
Explanation:
In diffraction, dark fringes (minimum) are observed when light from the two slits interfere destructively. These interferences require a phase difference of [tex](1/2)[/tex] cycle. At the [tex]n[/tex]th minimum, the path difference would needs to be [tex](n + (1/2))\, \lambda[/tex] (for integer values of [tex]n[/tex].)
Let [tex]\lambda_{a} = 910\; {\rm nm}[/tex] and [tex]\lambda_{b} = 650\; {\rm nm}[/tex] denote the wavelength of the two waves. Assume that the [tex]a[/tex]th minimum of the [tex]\lambda_{a} = 910\; {\rm nm}\![/tex] wave coincides with the [tex]b[/tex]th minimum of the [tex]\lambda_{b} = 650\; {\rm nm}\![/tex] wave. (Both [tex]a[/tex] and [tex]b[/tex] are non-negative integers.)
The path difference of the two waves need to match:
[tex]\displaystyle \left(a + \frac{1}{2}\right)\, \lambda_{a} = \left(b + \frac{1}{2}\right)\, \lambda_{b}[/tex].
[tex]\displaystyle \left(a + \frac{1}{2}\right)\, 910\; {\rm nm} = \left(b + \frac{1}{2}\right)\, 650\; {\rm nm}[/tex].
In other words, the value of non-negative integers [tex]a[/tex] and [tex]b[/tex] need to satisfy:
[tex]910\, a + 455 = 650\, b + 325[/tex].
There might be more than one pairs of [tex]a[/tex] and [tex]b[/tex] that satisfy the constraints. In general, the least positive [tex]a\![/tex] that meets the requirements can be found using linear programming techniques.
Specifically in this example, note that:
[tex]910\, a + 455 = 650\, b + 325[/tex].
[tex]70\, a+ 35 = 50\, b + 25[/tex].
[tex]14\, a + 7 = 10\, b + 5[/tex].
The least positive value of [tex]a[/tex] that satisfy the requirements is [tex]a = 2[/tex], for which [tex]b = 3[/tex].
At the position where minimum of the two waves coincide, path difference would be:
- [tex]\displaystyle (2 + (1/2))\, (910\times 10^{-9}\; {\rm m}) = 2.275 \times 10^{-6}\; {\rm m}[/tex] for the [tex]\lambda_{a} = 910\; {\rm nm}[/tex] wave, which is the same as
- [tex]\displaystyle (3 + (1/2))\, (650\times 10^{-9}\; {\rm m}) = 2.275 \times 10^{-6}\; {\rm m}[/tex] for the [tex]\lambda_{a} = 650\; {\rm nm}[/tex] wave.
In double-slit diffraction, for a pattern generated from a path difference of [tex]m\, \lambda[/tex], the angle [tex]\theta[/tex] between that pattern and the central maximum (relative to the center of the slits) should satisfy:
[tex]\displaystyle \sin(\theta) = \frac{m\, \lambda}{d}[/tex],
Where [tex]d[/tex] is the distance between (the center of) the two slits.
Rearrange to obtain:
[tex]\displaystyle \theta = \arcsin\left(\frac{m\, \lambda}{d}\right)[/tex].
In this question, the path difference is [tex]2.275 \times 10^{-6}\; {\rm m}[/tex], while the distance between the two slits is [tex]2.0 \; {\rm mm} = 2.0 \times 10^{-3}\; {\rm m}[/tex]. The angle between the pattern on the screen and the central maximum should be:
[tex]\begin{aligned} \theta &= \arcsin\left(\frac{m\, \lambda}{d}\right) \\ &= \arcsin\left(\frac{2.275 \times 10^{-6}\; {\rm m}}{2.0 \times 10^{-3}\; {\rm m}}\right) \\ &\approx 0.06517^{\circ}\end{aligned}[/tex].
Since the screen is at a distance of [tex]L = 2.8\; {\rm m}[/tex] from the screen, the on-screen distance [tex]Z[/tex] between the central maximum and the pattern at [tex]\theta \approx 0.06517^{\circ}[/tex] would be:
[tex]\begin{aligned} Z &= L\, \tan(\theta) \\ &\approx (2.8\; {\rm m})\, \tan(0.06517^{\circ}) \\ &\approx 3.2 \times 10^{-3}\; {\rm m}\\ &\approx 3.2\; {\rm mm} \end{aligned}[/tex].