Find the unknown angle measure by solving for the given variable

Answer:
[tex]\text{m}\angle L = 65\°[/tex]
[tex]\text{m}\angle M = 65\°[/tex]
[tex]\text{m}\angle N = 50\°[/tex]
Step-by-step explanation:
First, we can solve for the variable a by using two pieces of knowledge:
Using this knowledge, we can deduce that [tex]\text{m}\angle L = \text{m} \angle M = 2a + 40[/tex], and we can form the following equation to solve for a:
[tex]2(2a + 40) + 4a = 180[/tex]
↓ applying the distributive property ... [tex]a(b + c) = ab + ac[/tex]
[tex]4a + 80 + 4a = 180[/tex]
↓ combining like terms
[tex]8a + 80 = 180[/tex]
↓ subtracting 80 from both sides
[tex]8a = 100[/tex]
↓ dividing both sides by 8
[tex]\boxed{a = 12.5}[/tex]
Now that we know what a is, we can solve for the measure of each angle in the triangle.
[tex]\text{m}\angle L = 2a + 40[/tex]
[tex]\text{m}\angle L = 2(12.5) + 40[/tex]
[tex]\text{m}\angle L = 25 + 40[/tex]
[tex]\boxed{\text{m}\angle L = 65\°}[/tex]
____________________
[tex]\text{m}\angle M = \text{m}\angle L = 65\°[/tex]
[tex]\boxed{\text{m}\angle M = 65\°}[/tex]
____________________
[tex]\text{m}\angle N = 4a[/tex]
[tex]\text{m}\angle N = 4(12.5)[/tex]
[tex]\boxed{\text{m}\angle N = 50\°}[/tex]