Respuesta :

Answer:

[tex]\text{m}\angle L = 65\°[/tex]

[tex]\text{m}\angle M = 65\°[/tex]

[tex]\text{m}\angle N = 50\°[/tex]

Step-by-step explanation:

First, we can solve for the variable a by using two pieces of knowledge:

  1. the Isosceles Triangle Theorem: if two sides of a triangle are congruent, then their base angles are also congruent
  2. the measures of the interior angles of a triangle add to 180°

Using this knowledge, we can deduce that [tex]\text{m}\angle L = \text{m} \angle M = 2a + 40[/tex], and we can form the following equation to solve for a:

[tex]2(2a + 40) + 4a = 180[/tex]

↓ applying the distributive property ... [tex]a(b + c) = ab + ac[/tex]

[tex]4a + 80 + 4a = 180[/tex]

↓ combining like terms

[tex]8a + 80 = 180[/tex]

↓ subtracting 80 from both sides

[tex]8a = 100[/tex]

↓ dividing both sides by 8

[tex]\boxed{a = 12.5}[/tex]

Now that we know what a is, we can solve for the measure of each angle in the triangle.

[tex]\text{m}\angle L = 2a + 40[/tex]

[tex]\text{m}\angle L = 2(12.5) + 40[/tex]

[tex]\text{m}\angle L = 25 + 40[/tex]

[tex]\boxed{\text{m}\angle L = 65\°}[/tex]

____________________

[tex]\text{m}\angle M = \text{m}\angle L = 65\°[/tex]

[tex]\boxed{\text{m}\angle M = 65\°}[/tex]

____________________

[tex]\text{m}\angle N = 4a[/tex]

[tex]\text{m}\angle N = 4(12.5)[/tex]

[tex]\boxed{\text{m}\angle N = 50\°}[/tex]

ACCESS MORE