Answer:
[tex]573.9 \text{ in}^3[/tex]
Step-by-step explanation:
First, we can find the volume of the rectangular prism using the formula:
[tex]V_\square = l \cdot w \cdot d[/tex]
where [tex]l[/tex] is the prism's length, [tex]w[/tex] is its width, and [tex]d[/tex] is its depth.
Plugging the given dimensions into the formula:
[tex]V_\square = 8 \cdot 12 \cdot 6[/tex]
[tex]V _\square= 96 \cdot 6[/tex]
[tex]\boxed{V_\square = 576 \text{ in}^3}[/tex]
Next, we can find the volume of the half-sphere using the formula:
[tex]V_\circ = \dfrac{2}{3} \pi r^3[/tex]
where [tex]r[/tex] (or [tex]d/2[/tex]) is the half-sphere's radius.
Plugging the given diameter value into the formula:
[tex]V_\circ = \dfrac{2}{3} \pi (2/2)^3[/tex]
[tex]V_\circ = \dfrac{2}{3} \pi (1)^3[/tex]
[tex]\boxed{V_\circ=\dfrac{2}{3}\pi \text{ in}^3}[/tex]
Finally, we can find the volume of the composite figure by subtracting the volume of the half-sphere from the volume of the rectangular prism.
[tex]V = V_\square - V_\circ[/tex]
[tex]V = 576 \text{ in}^3 - \dfrac{2}{3}\pi \text{ in}^3[/tex]
We can evaluate this using a calculator.
[tex]\boxed{V\approx 573.9 \text{ in}^3}[/tex]