Respuesta :

To rotate a point (x, y) 360 degrees clockwise, we can use the following formulas:

New x-coordinate = x * cos(θ) - y * sin(θ)
New y-coordinate = x * sin(θ) + y * cos(θ)

Since we want to rotate the entire triangle 360 degrees, each point will be transformed using these formulas.

Let's calculate the new coordinates for each vertex:

For the first vertex (-3, 1):
New x-coordinate = -3 * cos(360°) - 1 * sin(360°) = -3 * 1 - 1 * 0 = -3
New y-coordinate = -3 * sin(360°) + 1 * cos(360°) = -3 * 0 + 1 * 1 = 1

For the second vertex (2, 4):
New x-coordinate = 2 * cos(360°) - 4 * sin(360°) = 2 * 1 - 4 * 0 = 2
New y-coordinate = 2 * sin(360°) + 4 * cos(360°) = 2 * 0 + 4 * 1 = 4

For the third vertex (5, -3):
New x-coordinate = 5 * cos(360°) - (-3) * sin(360°) = 5 * 1 - (-3) * 0 = 5
New y-coordinate = 5 * sin(360°) + (-3) * cos(360°) = 5 * 0 + (-3) * 1 = -3

Therefore, after rotating the triangle 360 degrees clockwise, the new coordinates would be (-3, 1), (2, 4), and (5, -3), which are the same as the original coordinates.
ACCESS MORE