Respuesta :
Using a graphing tool
Let's graph each of the cases to determine the solution of the problem
case A) [tex]y=3(2^{x})[/tex]
see the attached figure N [tex]1[/tex]
The range is the interval--------> (0,∞)
[tex]y> 0[/tex]
therefore
the function [tex]y=3(2^{x})[/tex] is not the solution
case B) [tex]y=2(3^{x})[/tex]
see the attached figure N [tex]2[/tex]
The range is the interval--------> (0,∞)
[tex]y> 0[/tex]
therefore
the function [tex]y=2(3^{x})[/tex] is not the solution
case C) [tex]y=-2^{x}+3[/tex]
see the attached figure N [tex]3[/tex]
The range is the interval--------> (-∞,3)
[tex]y< 3[/tex]
therefore
the function [tex]y=-2^{x}+3[/tex] is the solution
case D) [tex]y=2^{x}-3[/tex]
see the attached figure N [tex]4[/tex]
The range is the interval--------> (-3,∞)
[tex]y>-3[/tex]
therefore
the function[tex]y=2^{x}-3[/tex] is not the solution
the answer is
[tex]y=-2^{x}+3[/tex]




Answer:
The correct option is C.
Step-by-step explanation:
If a function is defined as
[tex]f(x)=a^x[/tex]
where, a>0, then the range of the function is greater than 0.
[tex]a^x>0[/tex] .... (1)
Option A: Using inequity (1),
[tex](2)^x>0[/tex]
Multiply both side by 3.
[tex]3(2)^x>0[/tex]
[tex]y>0[/tex]
The range of first function is y>0. Therefore option A is incorrect.
Option B: Using inequity (1),
[tex](3)^x>0[/tex]
Multiply both side by 2.
[tex]2(3)^x>0[/tex]
[tex]y>0[/tex]
The range of second function is y>0. Therefore option B is incorrect.
Option C: Using inequity (1),
[tex](2)^x>0[/tex]
Multiply both side by -1.
[tex]-(2)^x<0[/tex] [tex](\text{change the sign of inequality})[/tex]
Add 3 on both the sides.
[tex]-(2)^x+3<3[/tex]
[tex]y<3[/tex]
The range of first function is y<3. Therefore option C is correct.
Option D: Using inequity (1),
[tex](2)^x>0[/tex]
Subtract 3 from both the sides.
[tex]2^x-3>-3[/tex]
[tex]y>-3[/tex]
The range of second function is y>-3. Therefore option D is incorrect.