Respuesta :

Using a graphing tool

Let's graph each of the cases to determine the solution of the problem

case A) [tex]y=3(2^{x})[/tex]  

see the attached figure N [tex]1[/tex]

The range is the interval--------> (0,∞)

[tex]y> 0[/tex]

therefore

the function [tex]y=3(2^{x})[/tex] is not the solution

case B) [tex]y=2(3^{x})[/tex]

see the attached figure N [tex]2[/tex]  

The range is the interval--------> (0,∞)

[tex]y> 0[/tex]

therefore

the function [tex]y=2(3^{x})[/tex] is not the solution

case C) [tex]y=-2^{x}+3[/tex]  

see the attached figure N [tex]3[/tex]    

The range is the interval--------> (-∞,3)  

[tex]y< 3[/tex]

therefore

the function   [tex]y=-2^{x}+3[/tex]    is the solution

case D) [tex]y=2^{x}-3[/tex]  

see the attached figure N [tex]4[/tex]  

The range is the interval--------> (-3,∞)  

[tex]y>-3[/tex]

therefore

the function[tex]y=2^{x}-3[/tex] is not the solution

the answer is

[tex]y=-2^{x}+3[/tex]

Ver imagen calculista
Ver imagen calculista
Ver imagen calculista
Ver imagen calculista

Answer:

The correct option is C.

Step-by-step explanation:

If a function is defined as

[tex]f(x)=a^x[/tex]

where, a>0, then the range of the function is greater than 0.

[tex]a^x>0[/tex]               .... (1)

Option A: Using inequity (1),

[tex](2)^x>0[/tex]

Multiply both side by 3.

[tex]3(2)^x>0[/tex]

[tex]y>0[/tex]

The range of first function is y>0. Therefore option A is incorrect.

Option B: Using inequity (1),

[tex](3)^x>0[/tex]

Multiply both side by 2.

[tex]2(3)^x>0[/tex]

[tex]y>0[/tex]

The range of second function is y>0. Therefore option B is incorrect.

Option C: Using inequity (1),

[tex](2)^x>0[/tex]

Multiply both side by -1.

[tex]-(2)^x<0[/tex]                    [tex](\text{change the sign of inequality})[/tex]

Add 3 on both the sides.

[tex]-(2)^x+3<3[/tex]

[tex]y<3[/tex]

The range of first function is y<3. Therefore option C is correct.

Option D: Using inequity (1),

[tex](2)^x>0[/tex]

Subtract 3 from both the sides.

[tex]2^x-3>-3[/tex]

[tex]y>-3[/tex]

The range of second function is y>-3. Therefore option D is incorrect.

ACCESS MORE